Advertisement

Simplified sol-gel processing method for amorphous TiOx Memristors

  • 9 Accesses

Abstract

The memristor, a two-terminal memory device with units of resistance, has continued to gain momentum as simpler and more versatile memristive devices are discovered. Amorphous metal-oxide devices have emerged as potential replacements for organic and silicon materials in thin-film electronics. This work presents memristive devices based on amorphous TiOx which were synthesized using a simplified sol-gel process that does not require a dry nitrogen flow step to fabricate amorphous films of titanium oxide (TiOx) for memristive devices. This simplified process significantly decreases the cost and complexity of the fabrication of memristive devices. The memristive behavior was characterized by I-V curves and read-write sequential pulses. We report on the effects of different TiOx layers on I-V curve behavior, stability, aging of the devices as well as the influence of interfaces and electrode materials in the memristive properties. Devices made as a stack of copper electrode, different TiOx layers and aluminum electrode showed best results for on/off ratio than other devices in this work, as well better stability of resistive switching properties.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976). https://doi.org/10.1109/PROC.1976.10092

  2. 2.

    L. Chua, Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765–783 (2011). https://doi.org/10.1007/s00339-011-6264-9

  3. 3.

    E. Gale, TiO2 -based memristors and ReRAM: Materials, mechanisms and models (a review). Semicond. Sci. Technol. 29, 104004 (2014). https://doi.org/10.1088/0268-1242/29/10/104004

  4. 4.

    S.G. Hu, S.Y. Wu, W.W. Jia, et al., Review of nanostructured resistive switching Memristor and its applications. Nanosci. Nanotechnol. Lett. 6, 729–757 (2014). https://doi.org/10.1166/nnl.2014.1888

  5. 5.

    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

  6. 6.

    H. Nili, S. Walia, S. Balendhran, et al., Nanoscale resistive switching in amorphous Perovskite oxide (a-SrTiO3) Memristors. Adv. Funct. Mater. 24, 6741–6750 (2014). https://doi.org/10.1002/adfm.201401278

  7. 7.

    F. Argall, Switching phenomena in titanium oxide thin films. Solid State Electron. 11, 535–541 (1968). https://doi.org/10.1016/0038-1101(68)90092-0

  8. 8.

    J.Y. Kim, S.H. Kim, H.-H. Lee, et al., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006). https://doi.org/10.1002/adma.200501825

  9. 9.

    N. Gergel-Hackett, B. Hamadani, B. Dunlap, et al., A flexible solution-processed Memristor. IEEE Electron Device Lett. 30, 706–708 (2009). https://doi.org/10.1109/LED.2009.2021418

  10. 10.

    X. Tang, Crack-free TiO2 thin films with selfassembling nano-particles fabricated through in-situ sol–gel processing in reverse micelles. Surf. Coat. Technol. 221, 37–43 (2013). https://doi.org/10.1016/j.surfcoat.2013.01.025

  11. 11.

    Ü.Ö.A. Arıer, F.Z. Tepehan, Influence of heat treatment on the particle size of nanobrookite TiO2 thin films produced by sol–gel method. Surf. Coat. Technol. 206, 37–42 (2011). https://doi.org/10.1016/j.surfcoat.2011.06.039

  12. 12.

    L. Ge, M.X. Xu, M. Sun, Synthesis and characterization of TiO2 photocatalytic thin films prepared from refluxed PTA sols. Mater. Lett. 60, 287–290 (2006). https://doi.org/10.1016/j.matlet.2005.08.036

  13. 13.

    D. Chen, E.H. Jordan, M. Gell, M. Wei, Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process. Acta Biomater. 4, 553–559 (2008). https://doi.org/10.1016/j.actbio.2007.11.008

  14. 14.

    M.A. Mamun, A.H. Chowdhury, K. Chen, et al., Rapid and low-temperature processing of Mesoporous and Nanocrystalline TiO2 film using microwave irradiation. ACS Appl. Energy Mater. 1, 6288–6294 (2018). https://doi.org/10.1021/acsaem.8b01287

  15. 15.

    Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.H. Yoon, J. Kim, M.S. Oh, G.R. Yi, Y.Y. Noh, S.K. Park, Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 489(7414), 128–132 (2012). https://doi.org/10.1038/nature11434

  16. 16.

    E. Gale, R. Mayne, A. Adamatzky, B.D. Costello, Drop-coated titanium dioxide memristors. Mater. Chem. Phys. 143, 524–529 (2014). https://doi.org/10.1016/j.matchemphys.2013.09.013

  17. 17.

    H. Abunahla, M.A. Jaoude, C.J. O’Kelly, B. Mohammad, Sol-gel/drop-coated micro-thick TiO2 memristors for γ-ray sensing. Mater. Chem. Phys. 184, 72–81 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.027

  18. 18.

    S.K. Tripathi, R. Kaur, H. Kaur, et al., Fabrication and electrical characterization of memristor with TiO2 as an active layer. AIP Conf. Proc. 1661, 110027 (2015). https://doi.org/10.1063/1.4915472

  19. 19.

    J.H. Park, D.S. Jeon, T.G. Kim, Improved uniformity in the switching characteristics of ZnO-based memristors using Ti sub-oxide layers. J. Phys. D. Appl. Phys. 50, 015104 (2016). https://doi.org/10.1088/1361-6463/50/1/015104

  20. 20.

    K.M. Kim, J.M. Zhang, C. Graves, J.J. Yang, B.J. Choi, C.S. Hwang, Z. Li, R.S. Williams, Low-power, self-rectifying, and forming-free Memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 16(11), 6724–6732 (2016). https://doi.org/10.1021/acs.nanolett.6b01781

  21. 21.

    M. Cernea, O. Monnereau, P. Llewellyn, et al., Sol–gel synthesis and characterization of Ce doped-BaTiO3. J. Eur. Ceram. Soc. 26, 3241–3246 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.039

  22. 22.

    R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories – Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009). https://doi.org/10.1002/adma.200900375

  23. 23.

    I. Abraham, An advection-diffusion model for the vacancy migration Memristor. IEEE Access 4, 7747–7757 (2016). https://doi.org/10.1109/access.2016.2621721

  24. 24.

    L. Alekseeva, T. Nabatame, T. Chikyow, A. Petrov, Resistive switching characteristics in memristors with Al2O3/TiO2 and TiO2/Al2O3 bilayers. Jpn. J. Appl. Phys. 55, 08PB02 (2016). https://doi.org/10.7567/JJAP.55.08PB02

  25. 25.

    J. Lappalainen, J. Mizsei, M. Huotari, Neuromorphic thermal-electric circuits based on phase-change VO2 thin-film memristor elements. J. Appl. Phys. 125, 044501 (2019). https://doi.org/10.1063/1.5037990

  26. 26.

    N. S. M. Hadis, A. A. Manaf, S. H. Herman and S. H. Ngalim, High Roff/Ron ratio liquid based memristor sensor using sol gel spin coating technique, 2015 IEEE SENSORS, Busan, 2015, pp. 1–4. https://doi.org/10.1109/ICSENS.2015.7370379

  27. 27.

    M.D. Pickett, D.B. Strukov, J.L. Borghetti, et al., Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 74508 (2009). https://doi.org/10.1063/1.3236506

  28. 28.

    M. Cölle, M. Büchel, D.M. de Leeuw, Switching and filamentary conduction in non-volatile organic memories. Org. Electron. 7, 305–312 (2006). https://doi.org/10.1016/j.orgel.2006.03.014

  29. 29.

    F. Pan, C. Chen, Z. Wang, et al., Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Pro. Nat. Sci. Mater. Int. 20, 1–15 (2010). https://doi.org/10.1016/S1002-0071(12)60001-X

  30. 30.

    L. Yang, C. Kuegeler, K. Szot, et al., The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy. Appl. Phys. Lett. 95, 013109 (2009). https://doi.org/10.1063/1.3167810

  31. 31.

    H.Y. Jeong, J.Y. Lee, S.-Y. Choi, J.W. Kim, Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 95, 162108 (2009). https://doi.org/10.1063/1.3251784

  32. 32.

    X.-J. Zhu, J. Shang, R.-W. Li, Resistive switching effects in oxide sandwiched structures. Front. Mater. Sci. 6(3), 183–206 (2012). https://doi.org/10.1007/s11706-012-0170-8

  33. 33.

    T.D. Dongale, K.V. Khot, S.S. Mali, et al., Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route. Mater. Sci. Semicond. Process. 40, 523–526 (2015). https://doi.org/10.1016/j.mssp.2015.07.004

  34. 34.

    Y. Khrapovitskaya, N. Maslova, I. Sokolov, et al., The titanium oxide memristor contact material’s influence on element’s cyclic stability to degradation. Phys. Status Solidi C 12, 202–205 (2015). https://doi.org/10.1002/pssc.201400109

  35. 35.

    B. Mohammad, M.A. Jaoude, V. Kumar, et al., State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5, 311–329 (2016). https://doi.org/10.1515/ntrev-2015-0029

  36. 36.

    B.P.S. Rathore, R. Prakash, D. Kaur, Effect of AlN layer on the resistive switching properties of TiO2 based ReRAM memory devices. Curr. Appl. Phys. 18, 102–106 (2018). https://doi.org/10.1016/j.cap.2017.10.005

  37. 37.

    Y.H. Do, J.S. Kwak, J.P. Hong, et al., Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films. J. Appl. Phys. 104, 114512 (2008). https://doi.org/10.1063/1.3032896

  38. 38.

    Y.C. Bae, A.R. Lee, J.S. Kwak, et al., Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2−x/Pt matrix. Curr. Appl. Phys. 11, e66–e69 (2011). https://doi.org/10.1016/j.cap.2010.11.125

  39. 39.

    Z. Yan, Y. Guo, G. Zhang, J.-M. Liu, High-performance programmable memory devices based on co-doped BaTiO3. Adv. Mater. 23(11), 1351–1355 (2011). https://doi.org/10.1002/adma.201004306

Download references

Acknowledgements

Dr. Everaldo N. Moreira was supported by Sao Paulo Research Foundation (FAPESP) (proc. 2015/07316-9). This work was partially supported by the US National Science Foundation (NSF ENG ECCS 1709641).

Author information

Correspondence to Everaldo Nassar Moreira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nassar Moreira, E., Kendall, J., Maruyama, H. et al. Simplified sol-gel processing method for amorphous TiOx Memristors. J Electroceram (2020) doi:10.1007/s10832-019-00198-z

Download citation

Keywords

  • Amorphous films
  • TiOx
  • Memristors
  • Sol-gel processing
  • Resistive switching