Advertisement

Dielectric and ferroelectric properties of BTFCO thin films

  • David Coathup
  • Zheng Li
  • Xiaojing Zhu
  • Haixue Yan
  • Ruoying Zhang
  • Haitao YeEmail author
Article
  • 21 Downloads

Abstract

Single phase Bi3.25La0.75Ti2.5Nb0.25Fe0.125Co0.125O12 (BTFCO) thin films were deposited on Pt/TiO2/SiO2/Si substrates by RF-magnetron sputtering. Ferroelectric domain switching, including 180° and non-180° domains walls, was observed in polarization- electrical field hysteresis loops. The coercive field Ec of the materials, linking with zero polarization, is near 100 kV/cm. Dielectric permittivity changing with DC electric field shows one permittivity peak near 50 kV/cm, which suggests that field induced switching of 180° domains is completed at 50 kV/cm. Further increasing the DC field causes the decrease of dielectric permittivity, which can be attributed to the decrease of density of 90° domain walls. The difference between the Ec and the field for permittivity peak show that the switching field of 180° domain is lower than that of 90° domains in BTFCO ferroelectric films.

Keywords

Ferroelectric Dielectric Domain switching Aurivillius Thin films 

Notes

Acknowledgements

The project was partially supported by European Union H2020 RISE Project (No 734578).

References

  1. 1.
    Z. Shen, J. Liu, J. Grins, M. Nygren, P. Wang, Y. Kan, H. Yan, U. Sutter, Adv. Mater. 17(6), 676–680 (2005)CrossRefGoogle Scholar
  2. 2.
    G. Viola, K.B. Chong, M. Eriksson, Z. Shen, J. Zeng, Q. Yin, Y. Kan, P. Wang, H. Ning, H. Zhang, M.E. Fitzpatrick, M.J. Reece, H. Yan, Appl. Phys. Lett. 103, 182903 (2013)CrossRefGoogle Scholar
  3. 3.
    B. Park, B. Kang, S. Bu, T. Noh, J. Lee, W. Jo, Nature. 401, 682–684 (1999)CrossRefGoogle Scholar
  4. 4.
    A.Z. Simoes, A. Ries, B.D. Stojanovic, G. Biasotto, E. Longo, J.A. Varela, Ceram. Int. 33, 1535–1541 (2007)CrossRefGoogle Scholar
  5. 5.
    S.K. Singh, H. Ishiwara, Thin Solid Films 497(1–2), 90–95 (2006)CrossRefGoogle Scholar
  6. 6.
    Z. Li, K. Tao, J. Ma, Z. Gao, V. Koval, C.J. Jiang, G. Viola, H.F. Zhang, A. Mahajan, J. Cao, M. Cain, I. Abrahams, C.W. Nan, C.L. Ji, H.X. Yan, J. Mater, Chem. C. 6, 2733–2740 (2018)Google Scholar
  7. 7.
    H.X. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, M.J. Reece, J. Adv, Dielectrics 1(1), 107–118 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Katayama, Y. Noguchi, M. Miyayama, Adv. Mater. 19(18), 2552–2555 (2007)CrossRefGoogle Scholar
  9. 9.
    S.T. Zhang, X.J. Zhang, H.W. Cheng, Y.F. Chen, Z.G. Liu, N.B. Ming, X.B. Hu, J.Y. Wang, Appl. Phys. Lett. 83, 4378 (2003)CrossRefGoogle Scholar
  10. 10.
    Y.Q. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H.X. Yan, Sci. Rep. 5, 9953 (2015)CrossRefGoogle Scholar
  11. 11.
    M.A. Zurbuchen, G. Asayama, D.G. Schlom, S.K. Streiffer, Phys. Rev. Lett. 88(10), 107601 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of EngineeringUniversity of LeicesterLeicesterUK
  2. 2.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK

Personalised recommendations