Advertisement

Doping mechanisms and impedance study of Ba-substituted bismuth magnesium niobate pyrochlores

  • N. A. M. Dasin
  • K. B. TanEmail author
  • Z. Zainal
  • C. C. Khaw
  • S. K. Chen
Article

Abstract

Here we investigated the doping mechanisms and electrical properties of Ba-substituted Bi3.36Mg1.92-xBaxNb2.72O14.36 (BMBN) pyrochlores. Phase-pure BMBN pyrochlores prepared by solid-state reaction were found to crystallise in a cubic structure (Fd3m; No. 227) with their lattice parameters in the range 10.5968(16) - 10.5879(3) Å. The Scanning Electron Microscopy (SEM) analysis revealed that BMBN pyrochlores were composed of irregular shaped grains and their estimated crystallite sizes by both Williamson-Hall and Scherrer methods were in the range 50–75 nm and 60–70 nm, respectively. Neither thermal event nor significant weight loss was observed over the studied temperature range ~30–1000 °C, confirming that BMBN pyrochlores were thermally stable with negligible Bi2O3 loss. The high activation energies in the range 1.18–1.30 eV, as determined by the Arrhenius conductivity plots, showed BMBN pyrochlores to be highly insulating. The dielectric constants, ε’ and dielectric losses, tan δ were found in the range 147–183 and 7.9 × 10−2 - 9.6 × 10−2 at ~30 °C and 1 MHz. Negative temperature coefficient of capacitances, TCC, in the range (−478) - (−688) ppm/°C were recorded over ~30–300 °C at 1 MHz.

Keywords

Pyrochlore Solid-state reaction Doping mechanism Dielectric Impedance spectroscopy 

Notes

Acknowledgements

The financial support from the Ministry of Higher Education, Malaysia through Fundamental Research Grant Scheme (FRGS-02-01-15-1711FR) is gratefully appreciated.

References

  1. 1.
    E.A. Nenasheva, N.F. Kartenko, J. Eur, Ceram. Soc 26(10), 1929–1932 (2006)CrossRefGoogle Scholar
  2. 2.
    B. Geller, B. Thaler, A. Fathy, M.J. Libertatore, H.D. Chen, G. Ayers, V. Pendrick, Y. Narayan, Microw. J. 42(7), 64–72 (1999)Google Scholar
  3. 3.
    W. Wersing, S. Gohlke, R. Matz, W. Eurskens, V. Wannenmacher,“Integrated passive components using low temperature cofired ceramics,” Proc. Inter. Symp. Microelectr. (1998) pp. 193–199Google Scholar
  4. 4.
    J.C. Nino, M.T. Lanagan, C.A. Randall, J. Appl, Phys. 89(8), 4512–4516 (2001)Google Scholar
  5. 5.
    H. Kagata, T. Inoue, J. Kato, I. Kameyama, J. Japanese, Appl. Phys. 31(9S), 3152 (1992)Google Scholar
  6. 6.
    D.P. Cann, C.A. Randall, T.R. Shrout, Solid State Commun.100(7), 529–534 (1996)CrossRefGoogle Scholar
  7. 7.
    H. Du, X. Yao, J. Mater, Sci.: Mater. Electron. 15(9), 613–616 (2004)Google Scholar
  8. 8.
    X. Wang,H. Wang,X. Yao, J. Am. Ceram. Soc.80(10), 2745–2748 (1997)Google Scholar
  9. 9.
    M. Valant, P.K. Davies, J. Am. Ceram. Soc.83(1), 147–53 (2000)Google Scholar
  10. 10.
    K.B. Tan, C.K. Lee, Z. Zainal, G.C. Miles, A.R. West, J. Mater, Chem.15(34), 3501–3506 (2005)Google Scholar
  11. 11.
    M.W. Lufaso, T.A. Vanderah, I.M. Pazos, I. Levin, R.S. Roth, J.C. Nino, P.K. Schenck, J. Solid State Chem. 179(12), 3900–3910 (2006)CrossRefGoogle Scholar
  12. 12.
    B. Nguyen, L. Yun, R.L. Withers, J. Solid State Chem. 180(2) (2007)Google Scholar
  13. 13.
    V. P. Sirotinkin, A. A. Bush, Inorg. Mater.39(9), 974–977 (2003)Google Scholar
  14. 14.
    P.Y. Tan, K.B. Tan, C.C. Khaw, Z. Zainal, S.K. Chen, M.P. Chon, Ceram. Int. 40(3), 4237–4246 (2014)CrossRefGoogle Scholar
  15. 15.
    M.P. Chon, K.B. Tan, C.C. Khaw, Z. Zainal, Y.H. Taufiq-Yap, S.K. Chen, P.Y. Tan, J. Alloy, Compd.675, 116–127 (2016)CrossRefGoogle Scholar
  16. 16.
    M. A. L. Nobre, S. Lanfredi, Mater. Lett.47(6), 362–366 (2001)Google Scholar
  17. 17.
    C.C. Khaw, K.B. Tan, C.K. Lee, Ceram. Int. 35(4), 1473–1480 (2009)CrossRefGoogle Scholar
  18. 18.
    K.B. Tan, M.P. Chon, C.C. Khaw, Z. Zainal, Y.H. Taufiq-Yap, S.K. Chen, P.Y. Tan, Ceram. Int. 43(6), 4930–4936 (2017)CrossRefGoogle Scholar
  19. 19.
    P.Y. Tan, K.B. Tan, C.C. Khaw, Z. Zainal, S.K. Chen, M.P. Chon, Ceram. Int. 38(7), 5401–5409 (2012)CrossRefGoogle Scholar
  20. 20.
    T.A. Vanderah, I. Levin, M.W. Lufaso, Eur. J. Inorg. Chem. (14), 2895–2901 (2005, 2005)CrossRefGoogle Scholar
  21. 21.
    M. Subramanian, G. Aravamudan, G. S. Rao,Prog. Solid State Chem. 15 (2), 55–143 (1983)Google Scholar
  22. 22.
    I. Levin, T. G. Amos, J. C. Nino, T. A. Vanderah, I. M. Reaney, C. A. Randall, M. T. Lanagan, J. Mater. Res. 17(06), 1406–1411 (2002)CrossRefGoogle Scholar
  23. 23.
    M. Chen, D.B. Tanner, J.C. Nino, Phys. Rev. B 72(5), 054303 (2005)CrossRefGoogle Scholar
  24. 24.
    S. Kamba, V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, J.C. Nino, C.A. Randall, Phys. Rev. B 66(5), 054106 (2002)CrossRefGoogle Scholar
  25. 25.
    K.B. Tan, C.C. Khaw, C.K. Lee, Z. Zainal, Y.P. Tan, H. Shaari, Mater. Sci. Poland 27(3), 825–837 (2009)Google Scholar
  26. 26.
    C.K. Kwan, Dielectric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes (Elsevier Academic Press, United Kingdom, 2004), p. 401Google Scholar
  27. 27.
    J. T. Irvine, D. C. Sinclair, A. R. West, Adv. Mater. 2(3), 132–138 (1990)CrossRefGoogle Scholar
  28. 28.
    V. A. Chaudhari, G. K. Bichile, Smart Mater. Res. (2013)Google Scholar
  29. 29.
    L.C. Wen, H.Y. Hsieh, Y.H. Lee, S.C. Chang, H.C. Kao, H.S. Sheu, Y.S. Lee, Solid State Ionics 206, 39–44 (2012)CrossRefGoogle Scholar
  30. 30.
    N.A.M. Dasin, K.B. Tan, C.C. Khaw, Z. Zainal, S.K. Chen, Ceram. Int. 43(13), 10183–10191 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and ScienceUniversiti Tunku Abdul RahmanKajangMalaysia
  3. 3.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations