Advertisement

Journal of Electroceramics

, Volume 43, Issue 1–4, pp 34–40 | Cite as

Kinetics of current in glass-ceramics on the base of vanadium dioxide

  • V. R. KolbunovEmail author
  • A. I. Ivon
  • A. V. Vasheruk
Article
  • 34 Downloads

Abstract

The kinetics of current at switching of the VO2 based glass-ceramics samples from a state with high resistance (the off-state) to a state with low resistance (the on-state) and vice versa was studied. The delay of the transition from off-state to on-state, when a switching voltage U0 is applied to a sample, is related to the time tdon required to heat a sample to the metal-semiconductor phase transition temperature in VO2. The delay time tdon decreases with the increase of U0. It is shown that the calculated dependence of tdon on the voltage U0, obtained with the simplified heat balance equation of a sample and the “critical temperature” model, is in good conformity with the experimental data. It was found that the delay of reverse transition from the on-state to the off-state controls the conductive channel, within which the crystallites of VO2 are in the metallic phase. The delay time tdoff of this transition determines the time during which, after turning off the voltage U0, a conductive channel exists in a sample. The value of tdoff increases with the increase of U0. The reason for this behavior is the expansion of conductive channel with the increase of U0. As a consequence, takes place the increasing number of VO2 crystallites in the metallic phase. Therefore, tdoff increases due to an increase in the time required for dissipation of the heat released during the transition of the VO2 crystallites from the metallic phase to the semiconducting phase.

Keywords

Glass-ceramics VO2 Electric current kinetics Metal-semiconductor phase transition 

Notes

References

  1. 1.
    NTC Inrush Current Limiters. Application notes. (EPCOS AG, 2015), https://en.tdk.eu/download/531332/b1b77484fb39733c7d16858074bb9490/pdf-applicationnotes.pdf. Accessed November 2015
  2. 2.
    Inrush current mitigation. (Elliott sound products, 2017), sound.whsites.net/articles/inrush.htm. Accessed November 2017
  3. 3.
    A.A. Bugaev, B.P. Zakharchenya, and F.A. Chudnovskii, The Semiconductor-Metal Phase Transition and its Application (Nauka, Leningrad, 1979) [in Russian]Google Scholar
  4. 4.
    V.R. Kolbunov, A.I. Ivon, I.M. Chernenko, J. Mater, Sci. Mater. Electron. (2006).  https://doi.org/10.1007/s10854-005-5142-7 Google Scholar
  5. 5.
    A.I. Ivon, I.M. Chernenko, V.R. Kolbunov, J. Non-Cryst, Solids. (2007).  https://doi.org/10.1016/j.jnoncrysol.2007.02.033 CrossRefGoogle Scholar
  6. 6.
    Y. Ke, S. Wang, G. Liu, M. Li, T.J. White, Y. Long, Nano-Micro Small (2018).  https://doi.org/10.1002/smll.201802025 CrossRefGoogle Scholar
  7. 7.
    A.I. Ivon, V.R. Kolbunov, I.M. Chernenko, System technologies. №5 (64), 80–88 (2009), http://st.nmetau.edu.ua/uk/journal/13. Accessed September 2009 [in Russian]
  8. 8.
    A. Pergament, G. Stefanovich, V. Malinenko, A. Velichko, Advances in Condensed Matter. Physics (2015).  https://doi.org/10.1155/2015/654840 CrossRefGoogle Scholar
  9. 9.
    D. Li, A. A. Sharma, D. K. Gala, N. Shukla, H. Paik, S. Datta, D. G. Schlom, J. A. Bain, and M. Skowronski, ACS Appl. Mater. Interfaces. (2016) doi:  https://doi.org/10.1021/acsami.6b03501 CrossRefGoogle Scholar
  10. 10.
    G.M. Liao, S. Chen, L.L. Fan, Y.L. Chen, X.Q. Wang, H. Ren, Z.M. Zhang, C.W. Zou, AIP Adv. (2016).  https://doi.org/10.1063/1.4948311 CrossRefGoogle Scholar
  11. 11.
    I.P. Radu, B. Govoreanu, S. Mertens, X. Shi, M. Cantoro, M. Schaekers, M. Jurczak, S. de Gendt, A. Stesmans, J.A. Kittl, M. Heyns, K. Martens, Nanotechnology. (2015).  https://doi.org/10.1088/0957-4484/26/16/165202 CrossRefGoogle Scholar
  12. 12.
    H. Zhou, J. Li, Y. Xin, G. Sun, S. Bao, P. Jin, Ceram. Int. (2016).  https://doi.org/10.1016/j.ceramint.2016.01.178 CrossRefGoogle Scholar
  13. 13.
    B. Rajeswaran, A.M. Umarji, AIP Adv. (2016).  https://doi.org/10.1063/1.4944855 CrossRefGoogle Scholar
  14. 14.
    J. Ordonez-Miranda, Y. Ezzahri, K. Joulain, J. Drevillon, Phys. Rev. (2018).  https://doi.org/10.1103/PhysRevB.98.075144
  15. 15.
    V.R. Kolbunov, A.I. Ivon, Y.A. Kunitskiy, I.M. Chernenko, Ceram. Int. (2013).  https://doi.org/10.1016/j.ceramint.2012.10.189 CrossRefGoogle Scholar
  16. 16.
    A.I. Ivon, V.R. Kolbunov, I.M. Chernenko, J. Eur. Ceram. Soc. (2003).  https://doi.org/10.1016/S0955-2219(03)00031-1 CrossRefGoogle Scholar
  17. 17.
    M.A. Belyaev, P.P. Boriskov, A.A. Velichko, A.L. Pergament, V.V. Putrolainen, D.V. Ryabokon, G.B. Stefanovich, V.I. Sysun, S.D. Khanin, Phys. Sol. State. (2018).  https://doi.org/10.1134/S1063783418030046 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Electronics and Computer SystemsOles Honchar Dnipro National UniversityDniproUkraine

Personalised recommendations