Journal of Electroceramics

, Volume 43, Issue 1–4, pp 96–105 | Cite as

Temperature-induced double P-E loops and improved energy storage performances of BaTiO3-based ceramics sintered at lower temperature

  • Ziyang Wang
  • Peng Chen
  • Wenjing Shi
  • Yang Li
  • Dequan Li
  • Leiyang Zhang
  • Yan Yan
  • Yifei Wang
  • He Peng
  • Quan Li
  • Gang LiuEmail author


In the current investigation, the CuO modified BaTiO3 ceramics were prepared through the conventional electroceramic processing. XRD, XPS, and SEM have been employed to characterize the phases, valences of ions and the microstructures. The sintering behaviors of the prepared samples were performed using a dilatometer, and ceramics could be fabricated at lower temperature. The electric field and temperature dependent energy storage performance have been studied. The introducing of CuO is very effective to improve the energy storage density and the efficiency due to the formed double P-E loops. 0.5 wt.% CuO modified ceramic exhibited an energy density of 0.52 J/cm3, which is nearly twice of pure BaTiO3 ceramic. The J-E loops of CuO modified samples indicated double domain switches, consistent with the double P-E loops.


Low temperature Energy storage BaTiO3 Antiferroelectric property 



The work is supported by the National Natural Science Foundation of China (51502248 and 51672226); Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0356); Fundamental Research Funds for the Central Universities (XDJK2017D013, XDJK2018B009, XDJK2018C002); National Undergraduate Training Program for Innovation and Entrepreneurship (201910635038).


  1. 1.
    W.B. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12(9), 821–826 (2013)Google Scholar
  2. 2.
    D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267–1324 (1998)Google Scholar
  3. 3.
    Q. Zhang, Y. Zhang, X.R. Wang, T. Ma, Influence of sintering temperature on energy storage properties of BaTiO3-(Sr1–1.5xBix)TiO3 ceramics, Ceram. Int. 38 (2012) 4765–70Google Scholar
  4. 4.
    N. Ortega, A. Kumar, J.F. Scott, D.B. Chrisey, Relaxor-ferroelectric superlattices: High energy density capacitors. J. Phys. Condens. Matter 24(44), 445901 (2012)Google Scholar
  5. 5.
    T. Wang, L. Jin, C.C. Li, Q.Y. Hu, Relaxor ferroelectric BaTiO3-bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559–566 (2015)Google Scholar
  6. 6.
    L. Zhang, Z. Xu, Z.R. Li, S. Xia, Preparation and characterization of high Tc (1-x)BiScO3-xPbTiO3 ceramics from high energy ball milling process. J. Electroceram. 21(1-4), 605–608 (2008)Google Scholar
  7. 7.
    Q.Y. Hu, T. Wang, L.Y. Zhao, L. Jin, Dielectric and energy storage properties of BaTiO3–bi(Mg1/2Ti1/2)O3 ceramic: Influence of glass addition and biasing electric field. Ceram. Int. 43(1), 35–39 (2017)Google Scholar
  8. 8.
    D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, What can be expected from lead-free piezoelectric materials? Funct. Mater. Lett. 3(01), 5–13 (2010)Google Scholar
  9. 9.
    L. Jin, R.J. Huo, R.P. Guo, F. Li, Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl. Mater. Interfaces 8, 31109–31119 (2016)Google Scholar
  10. 10.
    H.B. Zhang, Y.W. Zhu, P.Y. Fan, M.A. Marwat, Temperature-insensitive electric-field-induced strain and enhanced piezoelectric properties of <001> textured (K,Na)NbO3-based lead-free piezoceramics. Acta Mater. 56, 389–398 (2018)Google Scholar
  11. 11.
    H.B. Zhang, C. Groh, Q. Zhang, W. Jo, Large strain in relaxor/ferroelectric composite lead-free piezoceramics. Adv. Electron. Mater. 1(6), 1500018 (2015)Google Scholar
  12. 12.
    L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures. J. Am. Ceram. Soc. 97(1), 1–27 (2014)Google Scholar
  13. 13.
    J. Yin, X. Lv, J.G. Wu, Enhanced energy storage properties of {Bi0.5[(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1-x-yTaxNby)O3 lead-free ceramics. Ceram. Int. 43, 13541–13546 (2017)Google Scholar
  14. 14.
    J. Yin, Y.X. Zhang, X. Lv, J.G. Wu, Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J. Mater. Chem. A 6(21), 9823–9832 (2018)Google Scholar
  15. 15.
    Q.B. Yuan, F.Z. Yao, Y.F. Wang, R. Ma, Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552–9558 (2017)Google Scholar
  16. 16.
    W.B. Li, D. Zhou, L.X. Pang, R. Xu, Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A 5(37), 19607–19612 (2017)Google Scholar
  17. 17.
    Y.Y. Zhao, J.W. Xu, L. Yang, C.R. Zhou, High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complexion. J. Alloys Compd. 666, 209–216 (2016)Google Scholar
  18. 18.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)Google Scholar
  19. 19.
    Z.S. Wu, K. Parvez, X.L. Feng, K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4(1), 2487 (2013)Google Scholar
  20. 20.
    J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4(1), 1732 (2013)Google Scholar
  21. 21.
    J. Han, G.N. Li, F. Liu, M.Q. Wang, Investigation of K3V2( PO4)3/C nanocomposites as high-potential cathode materials for potassiumion batteries. Chem. Commun. 53(11), 1805–1808 (2017)Google Scholar
  22. 22.
    Y. Tian, L. Jin, Q.Y. Hu, K. Yu, Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 7(2), 834–842 (2019)Google Scholar
  23. 23.
    B.B. Liu, X.H. Wang, Q.C. Zhao, L.T. Li, Improved energy storage properties of fine-crystalline BaTiO3 ceramics by coating powders with Al2O3 and SiO2. J. Am. Ceram. Soc. 98(8), 2641–2646 (2015)Google Scholar
  24. 24.
    Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3(35), 18146–18153 (2015)Google Scholar
  25. 25.
    Y.H. Huang, Y.J. Wu, W.J. Qiu, J. Li, Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc. 35, 1469–1476 (2015)Google Scholar
  26. 26.
    L.Q. Zhou, P.M. Vilarinho, J.L. Baptista, Dependence of the structural and dielectric properties of Ba1-xSrxTiO3 ceramic solid solutions on raw material processing. J. Eur. Ceram. Soc. 19(11), 2015–2020 (1999)Google Scholar
  27. 27.
    Y. Yan, C. Ning, Z.Z. Jin, H.R. Qin, The dielectric properties and microstructure of BaTiO3 ceramics with ZnO-Nb2O5 composite addition. J. Alloys Compd. 646, 748–752 (2015)Google Scholar
  28. 28.
    X.F. Su, B.C. Riggs, M. Tomozawa, J.K. Nelson, Prepartion of BaTiO3/low melting glass core-shell nanoparticles for energy storage capacitor applications. J. Mater. Chem. A 2(42), 18087–18096 (2014)Google Scholar
  29. 29.
    C.L. Zhao, H.J. Wu, F. Li, Y.Q. Cai, Practical high piezoelectricity in barium Titanate ceramics utilizing multiphase convergence with broad structural flexibility. J. Am. Chem. Soc. 140(45), 15252–15260 (2018)Google Scholar
  30. 30.
    T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)Google Scholar
  31. 31.
    G. Liu, D. Zhang, T.W. Button, Preparation of concentrated barium titanate suspensions incorporating nano-sized powders. J. Eur. Ceram. Soc. 30(2), 171–176 (2010)Google Scholar
  32. 32.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Paradhan, Structural, microstructural and electrical studies of La and cu doped BaTiO3 ceramics. Phys. B 405(1), 99–106 (2010)Google Scholar
  33. 33.
    X.D. Jian, B. Lu, D.D. Li, Y.B. Yao, Direct measurement of large Electrocaloric effect in Ba(ZrxTi1-x)O3 ceramics. ACS Appl. Mater. Interfaces 10(5), 4801–4807 (2018)Google Scholar
  34. 34.
    T. Li, K. Yang, R.Z. Xue, Y.C. Xue, The effect of CuO doping on the microstructures and dielectric properties of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 22(7), 838–842 (2011)Google Scholar
  35. 35.
    M.V.S. Rao, Effect of copper doping on structural, dielectric and DC electrical resistivity properties of BaTiO3. Adv. Mater. Phys. Chem. 3, 77–82 (2013)Google Scholar
  36. 36.
    W.L. Warren, K. Vanheusden, D. Dimos, G.E. Pike, Oxygen vacancy motion in perovskite oxides. J. Am. Ceram. Soc. 79(2), 536–538 (1996)Google Scholar
  37. 37.
    M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, A mechanism for low-temperature sintering. J. Eur. Ceram. Soc. 26(13), 2777–2783 (2006)Google Scholar
  38. 38.
    D.Y. Liang, X.H. Zhu, J.L. Zhu, J.G. Zhu, Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr,Ti)O3 lead-free piezoelectric ceramics. Ceram. Int. 40(2), 2585–2592 (2014)Google Scholar
  39. 39.
    C.S. Chou, C.L. Liu, C.M. Hsiung, R.Y. Yang, Preparation and characterization of the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 doped with CuO. Power Technol. 210, 212–219 (2011)Google Scholar
  40. 40.
    J.G. Jolley, G.G. Geesey, M.R. Hankins, R.B. Wright, Auger-Electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide. Appl. Surf. Sci. 37(4), 469–480 (1989)Google Scholar
  41. 41.
    F. Parmigiani, G. Pacchioni, F. Illas, P.S. Bagus, Studies of the CuO bond in cupric oxide by x-ray photoelectron-spectroscopy and abinitio electronic-structure models. J. Electron Spectrosc. Relat. Phenom. 59(3), 255–269 (1992)Google Scholar
  42. 42.
    Z. Hussaint, M.A. Salim, M.A. Khan, E.E. Khawaja, X-ray photoelectron and auger-spectroscopy study of copper-sodium germanate glasses. J. Non-Cryst. Solids 110(1), 44–52 (1989)Google Scholar
  43. 43.
    Y. Yang, K.H. Liu, X.K. Liu, G. Liu, Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering. Ceram. Int. 42(6), 7877–7882 (2016)Google Scholar
  44. 44.
    V. Buscaglia, M.T. Buscaglia, M. Viviani, L. Mitoseriu, Grain size and grain boundary-related effects on the properties of nanocrys-talline barium titanate ceramics. J. Eur. Ceram. Soc. 14, 2889–2898 (2006)Google Scholar
  45. 45.
    G. Arlt, D. Hennings, G. Dewith, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 4, 1619–1625 (1985)Google Scholar
  46. 46.
    D.M. Lin, K.W. Kwok, H.L.W. Chan, Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 90, 232903 (2007)Google Scholar
  47. 47.
    P. Fu, Z.J. Xu, R.Q. Chu, W. Li, Structure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3-Bi0.5(Na0.82K0.18)0.5TiO3-BiAlO3 lead free piezoelectric ceramics. Mater. Chem. Phys. 138, 140–145 (2013)Google Scholar
  48. 48.
    J.Y. Wu, A. Mahajana, L. Riekehrb, H.F. Zhang, Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3ceramics with polar nano regions for high power energy storage. Nano Energy 50, 723–732 (2018)Google Scholar
  49. 49.
    M.I. Morozov, D. Damjanovic, Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening, and softening. J. Appl. Phys. 107, 034106 (2010)Google Scholar
  50. 50.
    T. Wang, J.C. Hu, H.B. Yang, L. Jin, Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3–0.35BaTiO3 ceramics. J. Appl. Phys. 121, 084103 (2017)Google Scholar
  51. 51.
    Y.Q. Tan, J.L. Zhang, C.L. Wang, Aging behaviours of CuO modified BaTiO3 ceramics. Adv. Appl. Ceram. 113(4), 223–227 (2014)Google Scholar
  52. 52.
    L. Zhao, J. Gao, Q. Liu, S.J. Zhang, Silver Niobate Lead-free Antiferroelectric ceramics: Enhancing energy storage density by B-site doping. ACS Appl. Mater. Interfaces 10(1), 819–826 (2018)Google Scholar
  53. 53.
    H.X. Yan, F. Inam, G. Viola, H.P. Ning, The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. 1, 107–118 (2011)Google Scholar
  54. 54.
    A. Mahajan, H.F. Zhang, J.Y. Wu, E.V. Ramana, Effect of Phase Transitions on Thermal Depoling in Lead-Free 0.94(Bi0.5Na0.5TiO3)−0.06(BaTiO3) Based Piezoelectrics. J. Phys. Chem. C 121, 5709–5718 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ziyang Wang
    • 1
  • Peng Chen
    • 2
  • Wenjing Shi
    • 2
  • Yang Li
    • 2
  • Dequan Li
    • 2
  • Leiyang Zhang
    • 2
  • Yan Yan
    • 2
  • Yifei Wang
    • 1
  • He Peng
    • 3
  • Quan Li
    • 4
  • Gang Liu
    • 2
    Email author
  1. 1.Hanhong CollegeSouthwest UniversityChongqingChina
  2. 2.Faculty of Materials and EnergySouthwest UniversityChongqingChina
  3. 3.College of Engineering and TechnologySouthwest UniversityChongqingPeople’s Republic of China
  4. 4.Chongqing Academy of Science and TechnologyChongqingPeople’s Republic of China

Personalised recommendations