Journal of Electroceramics

, Volume 43, Issue 1–4, pp 123–130 | Cite as

Building high transduction coefficient BiScO3–PbTiO3 piezoceramic and its power generation characteristics

  • Haiyan Zhao
  • Yudong HouEmail author
  • Xiaole Yu
  • Xudong Liu
  • Mupeng Zheng
  • Mankang Zhu


Improving the power generation characteristics of piezoelectric energy harvesters requires the construction of piezoelectric ceramics with high transduction coefficient (d33 × g33), which remains a big challenge. In this paper, guided by piezoelectric energy harvester applications, the relationship between the composition, microstructure and transduction coefficient of (1 − x)BiScO3xPbTiO3 material is systematically studied. The results demonstrated that the sample with a composition of x = 0.64 not only has a high Curie temperature (426 °C) which is beneficial to improve the working stability of the device, but also has a very high d33 × g33 value (15,110 × 10−15 m2/N), which is significantly superior to the commercial PZT system. Excellent electrical performance can be attributed to the fact that the composition of x = 0.64 located near MPB has a very high piezoelectric charge constant (505 pC/N) at the same time with moderate dielectric constant (1907). The cantilever-type energy harvester made of optimized composition generated a high output power density of 2.93 μW/mm3 at room temperature, which charged a commercial 47 μF electrolytic capacitor to 22 V in just 220 s and lighted up 72 LEDs for 0.1~0.2 s. Further, x = 0.64 harvester exhibited a large output voltage of 2.76 V even at 350 °C, suggesting its potential use for powering high temperature wireless sensors.


Transduction coefficient Piezoceramics Energy harvester Power density 



This work was supported by the National Natural Science Foundation of China (Grant No. 51677001, 51602012), Ri-Xin Talents Project of Beijing University of Technology (Grant No. 2017-RX(1)-15) and Beijing Municipal High Level Innovative Team Building Program (No. IDHT20170502).


  1. 1.
    R.A. Islam, S. Priya, J. Am. Ceram. Soc. 89(10), 3147–3156 (2006)CrossRefGoogle Scholar
  2. 2.
    R.E. Eitel, C.A. Randall, T.R. Shrout, S. Park, Jpn. J. Appl. Phys. 41, 2099 (2002)CrossRefGoogle Scholar
  3. 3.
    S. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, E.F. Alberta, Appl. Phys. Lett. 86(26), 262904 (2005)CrossRefGoogle Scholar
  4. 4.
    E. Berganza, C. Pascual-González, H. Amorín, A. Castro, M. Algueró, J. Eur. Ceram. Soc. 36(16), 4039–4048 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Amorin, M. Alguero, R.D. Campo, E. Vila, P. Ramos, M. Dolle, Y. Romaguera-Barcelay, J.P. Cruz, A. Castro, Sci. Technol. Adv. Mater. 16(1), 016001 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Pascual-González, E. Berganza, H. Amorín, A. Castro, M. Algueró, Mater. Des. 108, 501–509 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Qiao, C. He, Z. Wang, X. Li, Y. Liu, X. Long, Ceram. Int. 43(14), 11463–11468 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Chen, G. Liu, J. Cheng, S. Dong, Appl. Phys. Lett. 107(3), 032906 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Wu, Y. Yu, X. Li, X. Gao, S. Dong, S. Zhang, J. Am. Ceram. Soc. 98(10), 3145–3152 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, C.R. Bowen, J. Mater. Chem. A 5(14), 6569–6580 (2017)CrossRefGoogle Scholar
  11. 11.
    H.H. Kumar, C.M. Lonkar, K. Balasubramanian, P. Davies, J. Am. Ceram. Soc. 100(1), 215–223 (2017)CrossRefGoogle Scholar
  12. 12.
    Z. Yang, J. Zu, Energy Convers. Manag. 122, 321 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Yuan, Y. Yang, Q. Hu, Y. Wang, D.C. Lupascu, J. Am. Ceram. Soc. 97(12), 3999–4004 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Wu, X. Chen, Z. Chu, W. Shi, Y. Yu, S. Dong, Appl. Phys. Lett. 109(17), 173901 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Wu, H. Shi, T. Zhao, Y. Yu, S. Dong, Adv. Funct. Mater. 26(39), 7186–7194 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Yan, M. Zheng, Y. Hou, M. Zhu, J. Eur. Ceram. Soc. 37(7), 2583–2589 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Algueró, P. Ramos, R. Jiménez, H. Amorín, E. Vila, A. Castro, Acta Mater. 60(3), 1174–1183 (2012)CrossRefGoogle Scholar
  18. 18.
    R. Nie, Q. Zhang, Y. Yue, H. Liu, Y. Chen, Q. Chen, J. Zhu, P. Yu, D. Xiao, J. Appl. Phys. 119(12), 124111 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Zheng, Y. Hou, H. Ge, M. Zhu, H. Yan, Scripta Mater. 68(9), 707–710 (2013)CrossRefGoogle Scholar
  20. 20.
    R. Yue, X. Hou, W. He, J. Yu, Jpn. J. Appl. Phys. 52(6R), 061502 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, J. Appl. Phys. 104(3), 034104 (2008)CrossRefGoogle Scholar
  22. 22.
    Q. Liu, Y. Zhang, L. Zhao, J. Gao, Z. Zhou, K. Wang, X. Zhang, L. Li, J.-F. Li, J. Mater. Chem. C 6(39), 10618–10627 (2018)CrossRefGoogle Scholar
  23. 23.
    M.P. Zheng, Y.D. Hou, F.Y. Xie, J. Chen, M.K. Zhu, H. Yan, Acta Mater.61(5), 1489–1498 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Wei, C. Jin, P. Ye, P. Li, Y. Zeng, G. Xu, Appl. Phys. A Mater. Sci. Process. 123(4) (2017)Google Scholar
  25. 25.
    R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40(10), 5999–6002 (2001)CrossRefGoogle Scholar
  26. 26.
    V.F. Freitas, L.F. Cótica, I.A. Santos, D. Garcia, J.A. Eiras, J. Eur. Ceram. Soc. 31(15), 2965–2973 (2011)CrossRefGoogle Scholar
  27. 27.
    T. Takeuchi, M. Tabuchi, I. Kondoh, N. Tamari, H. Kageyama, J. Am. Ceram. Soc. 83(3), 541 (2000)CrossRefGoogle Scholar
  28. 28.
    P. Li, B. Liu, B. Shen, J. Zhai, Y. Zhang, F. Li, X. Liu, J. Eur. Ceram. Soc. 38(1), 75–83 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Zhang, K. Wang, J. Zhou, J. Zhou, X. Chu, X. Lv, J. Wu, J. Li, Acta Mater. 122, 344–351 (2017)CrossRefGoogle Scholar
  30. 30.
    G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797–818 (1999)CrossRefGoogle Scholar
  31. 31.
    T.R. Shrout, S.J. Zhang, J. Electroceram. 19(1), 113–126 (2007)CrossRefGoogle Scholar
  32. 32.
    Y. Yue, Y. Hou, M. Zheng, X. Yan, J. Fu, M. Zhu, J. Eur. Ceram. Soc. 37(15), 4625–4630 (2017)CrossRefGoogle Scholar
  33. 33.
    Z. Gubinyi, C. Batur, A. Sayir, F. Dynys, J. Electroceram. 20, 95 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Haiyan Zhao
    • 1
  • Yudong Hou
    • 1
    Email author
  • Xiaole Yu
    • 1
  • Xudong Liu
    • 1
  • Mupeng Zheng
    • 1
  • Mankang Zhu
    • 1
  1. 1.College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Education Ministry of ChinaBeijing University of TechnologyBeijingChina

Personalised recommendations