Journal of Electroceramics

, Volume 43, Issue 1–4, pp 51–63 | Cite as

Castling of phases in BaZrO3 doped (Na0.52K0.48)(Nb0.95Sb0.05)O3: Synergistic effect on electrical fatigue, ageing and thermal stability

  • H. S. PandaEmail author
  • Bhupender RawalEmail author
  • N. N. Wathore
  • B. Praveenkumar


BaZrO3 doped (Na0.52K0.48)(Nb0.95Sb0.05)O3 ceramics were prepared using solid state route. The optimization of processing parameters like calcination temperature (800 °C), sintering temperature (1140 °C) and poling parameters (3 kV/mm at 120 °C/60 min) was carried out on base composition. Optimized parameters yielded a piezoelectric charge coefficient of 171 pC/N in composition having 4 mol% BaZrO3. Low temperature dielectric measurements and high temperature X-ray diffraction studies, along with structural refinement using Rietveld method were performed to ascertain the new found phenomenon. A castling-like phenomenon was observed in (1-x)(Na0.52K0.48)(Nb0.95Sb0.05)O3xBaZO3 (0.00 ≤ x ≤ 0.08) ceramics, where two phases interchanged their position. Also, BaZrO3 led to negative ageing behavior in these ceramics. Doping of BaZrO3 improved the electrical fatigue behavior and degraded the ferroelectric and thermal stability of ceramics.


Castling Ferroelectric Thermal stability Ageing Fatigue 



  1. 1.
    G.H. Haertling, Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)Google Scholar
  2. 2.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)Google Scholar
  3. 3.
    J. Fu, R. Zuo, D. Lv, Y. Liu, Y. Wu, Structure and piezoelectric properties of lead-free. J. Mater. Sci. Mater. Electron., 241–245 (2010)Google Scholar
  4. 4.
    J. Fu, R. Zuo, X. Fang, K. Liu, Lead-free ceramics based on alkaline niobate tantalite antimonate with excellent dielectric and piezoelectric properties. Mater. Res. Bull. 44(5), 1188–1190 (2009)Google Scholar
  5. 5.
    J. Fu, R. Zuo, Y. Liu, X-ray analysis of phase coexistence and electric poling processing in alkaline niobate-based compositions. J. Alloys Compd. 493(1-2), 197–201 (2010)Google Scholar
  6. 6.
    D. Lin, K.W. Kwok, H. Tian, H.W.L. Chan, Phase transitions and electrical properties of (Na1-xKx )(Nb1-ySby)O3 lead-free piezoelectric ceramics with a MnO2 sintering aid. J. Am. Ceram. Soc. 90(5), 1458–1462 (2007)Google Scholar
  7. 7.
    Y. Gong, G. Yang, X. Li, L. Gong, L. Li, J. Peng, X. Zheng, J. Mater. Sci. Mater. Electron. 23, 1910–1915 (2012)Google Scholar
  8. 8.
    B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press London and New York, 1971), pp. 193–194Google Scholar
  9. 9.
    H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, M. Kuball, Raman spectroscopy of (K,Na)NbO3 and (K,Na)1−xLixNbO3. Appl. Phys. Lett. 93(26), 262901 (2008)Google Scholar
  10. 10.
    L. Wu, J.L. Zhang, C.L. Wang, J.C. Li, Influence of compositional ratio K/Na on physical properties in (Kx Na1-x) NbO3 ceramics. J. Appl. Phys. 103, 1–5 (2008)Google Scholar
  11. 11.
    N. Ishizawa, J. Wang, T. Sakakura, Y. Inagaki, K.I. Kakimoto, Structural evolution of Na0.5K0.5NbO3 at high temperatures. J. Solid State Chem. 183(11), 2731–2738 (2010)Google Scholar
  12. 12.
    Y. Guo, K. Kakimoto, H. Ohsato, (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59(2-3), 241–244 (2005)Google Scholar
  13. 13.
    P. Bomlai, S. Sukprasert, S. Muensit, S.J. Milne, Reaction-sintering of lead-free piezoceramic compositions: (0.95 - X)Na0.5K0.5NbO3-0.05LiTaO3- xLiSbO3. J. Mater. Sci. 43(18), 6116–6121 (2008)Google Scholar
  14. 14.
    Y. Saito, H. Takao, High performance Lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system. Ferroelectrics 338(1), 17–32 (2006)Google Scholar
  15. 15.
    X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)Google Scholar
  16. 16.
    X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, X. Lou, B. Zhang, J. Zhu, New potassium-sodium niobate ceramics with a giant d33. ACS Appl. Mater. Interfaces 6(9), 6177–6180 (2014)Google Scholar
  17. 17.
    J. Hao, Z. Xu, R. Chu, W. Li, J. Du, Large electric-field-induced strain in SrZrO3 modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free electromechanical ceramics with fatigue-resistant behavior. J. Alloy. Compd. 647, 857–865 (2015)Google Scholar
  18. 18.
    A. Maqbool, A. Hussain, J.U. Rahman, J.K. Park, T.G. Park, J.S. Song, M.H. Kim, Effect of SrZrO3 substitution on structural and electrical properties of lead-free Bi0.5Na0.5TiO3–BaTiO3 ceramics. Phys. Status Solidi A 211(8), 1709–1714 (2014)Google Scholar
  19. 19.
    K. Wang, F.Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J.F. Li, J. Rödel, Temperature-insensitive (K,Na)NbO3-based Lead-free Piezoactuator ceramics. Adv. Funct. Mater. 23(33), 4079–4086 (2013)Google Scholar
  20. 20.
    F.Z. Yao, J. Glaum, K. Wang, W. Jo, J. Rödel, J.F. Li, Fatigue-free unipolar strain behavior in CaZrO3 and MnO2 co-modified (K,Na)NbO3-based lead-free piezoceramics. Appl. Phys. Lett. 103(19), 192907 (2013)Google Scholar
  21. 21.
    F.Z. Yao, K. Wang, Y. Shen, J.F. Li, Robust CaZrO3-modified (K, Na)NbO3-based lead-free piezoceramics: High fatigue resistance insensitive to temperature and electric field. J. Appl. Phys. 118(13), 134102 (2015)Google Scholar
  22. 22.
    F.Z. Yao, K. Wang, W. Jo, J.S. Lee, J.F. Li, Effect of poling temperature on piezoelectricity of CaZrO3-modified (K, Na)NbO3-based lead-free ceramics. J. Appl. Phys. 116(11), 114102 (2014)Google Scholar
  23. 23.
    J.S. Zhou, F.Z. Yao, K. Wang, Q. Li, X.M. Qi, F.Y. Zhu, J.F. Li, Ferroelectric and piezoelectric properties of 0.95(Na0.49K0.49Li0.02)(Nb0.8Ta0.2)O3–0.05CaZrO3 lead-free ceramics prepared by spark plasma sintering. J. Mater. Sci. Mater. Electron. 26, 9329–9335 (2015)Google Scholar
  24. 24.
    Y. Zhang, L. Li, W. Bai, B. Shen, J. Zhai, B. Li, Effect of CaZrO3 on phase structure and electrical properties of KNN-based lead-free ceramics. RSC Adv. 5(25), 19647–19651 (2015)Google Scholar
  25. 25.
    B. Zhang, X. Wang, X. Cheng, J. Zhu, D. Xiao, J. Wu, Enhanced d33 value in (1-x)[(K0.50Na0.50)0.97Li0.03Nb0.97Sb0.03O3] - xBaZrO3 lead-free ceramics with an orthorhombic–rhombohedral phase boundary. J. Alloys Compd. 581, 446–451 (2013)Google Scholar
  26. 26.
    B. Zhang, J. Wu, X. Wang, X. Cheng, J. Zhu, D. Xiao, Rhombohedral-orthorhombic phase coexistence and electrical properties of ta and BaZrO3 co-modified (K, Na)NbO3 lead-free ceramics. Curr. Appl. Phys. 13(8), 1647–1650 (2013)Google Scholar
  27. 27.
    R. Zuo, J. Fu, Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. J. Am. Ceram. Soc. 94(5), 1467–1470 (2011)Google Scholar
  28. 28.
    B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, X. Lou, Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl. Mater. Interfaces 5(16), 7718–7725 (2013)Google Scholar
  29. 29.
    J.F. Scott, C.A. Araujo, B.M. Melnick, L.D. Mcmillan, R. Zuleeg, Quantitative measurement of space charge effects in lead zirconate titanate memories. J. Appl. Phys. 70(1), 382–388 (1991)Google Scholar
  30. 30.
    J. Nuffer, D.C. Lupascu, J. Rödel, Damage evolution in ferroelectric PZT induced by bipolar electric cycling. Acta Mater. 48(14), 3783–3794 (2000)Google Scholar
  31. 31.
    J. Nuffer, D.C. Lupascu, J. Rödel, Stability of pinning centers in fatigued lead – Zirconate – Titanate. Appl. Phys. Lett. 80(6), 1049–1051 (2002)Google Scholar
  32. 32.
    B. Rawal, N.N. Wathore, B. Praveenkumar, H.S. Panda, Effect of donor and acceptor co-doping in (Na0.52K0.48)(Nb0.95Sb0.05)O3 lead-free piezoceramic. J. Mater. Sci. Mater. Electron. 28, 16426–16432 (2017)Google Scholar
  33. 33.
    H.D. Megaw, Crystal structure of double oxides of the perovskite type. Proc. Phys. Soc. 58(2), 133–152 (1946)Google Scholar
  34. 34.
    R.A. Young, in Introduction to the Rietveld Method in: R. A. Young, ed. by T. R. Method. (Oxford University Press, Oxford, 1993), pp. 1–38Google Scholar
  35. 35.
    A.L. Ortiz, F.L. Cumbrera, F.S. Bajo, F. Guiberteau, R. Caruso, Fundamental parameters approach in the Rietveld method: A study of the stability of results versus the accuracy of the instrumental profile. J. Eur. Ceram. Soc. 20(11), 1845–1851 (2000)Google Scholar
  36. 36.
    A.J. Paula, R. Parra, M.A. Zaghete, J.A. Varela, A.J. Paula, R. Parra, M.A. Zaghete, J.A. Varela, Study on the K3Li2Nb5O15 formation during the production of (Na0.5K0.5)1-xLixNbO3 lead-free piezoceramics at the morphotropic phase boundary. Solid State Commun. 149(39-40), 1587–1590 (2009)Google Scholar
  37. 37.
    K. Kakimoto, K. Akao, Y.P. Guo, H. Ohsato, Raman scattering study of piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics. Jpn. J. Appl. Phys. 44(9B), 7064–7067 (2005)Google Scholar
  38. 38.
    V.J. Tennery, K.W. Hang, Thermal and X-ray diffraction studies of the NaNbO3 –KNbO3System. J. Appl. Phys. 39(10), 4749–4753 (1968)Google Scholar
  39. 39.
    Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhou, J. Guan, Synthesis, growth mechanism and optical properties of (K,Na)NbO3 nanostructures. Cryst. Eng. Comm. 12(10), 3157–3162 (2010)Google Scholar
  40. 40.
    D.W. Baker, P.A. Thomas, N. Zhang, A.M. Glazer, A comprehensive study of the phase diagram of KxNa1-xNbO3. Appl. Phys. Lett. 95(9), 91903 (2009)Google Scholar
  41. 41.
    T.A. Skidmore, S.J. Milne, Phase development during mixed-oxide processing of a [Na0.5K0.5NbO3](1-x)-[LiTaO3](x) powder. J. Mater. Res. 22(8), 2265–2272 (2007)Google Scholar
  42. 42.
    M.M. Shamim, T. Ishidate, K. Ohi, High pressure raman study of KNbO3–KTaO3 and KNbO3–NaNbO3 mixed crystals. J. Phys. Soc. Jpn. 72(3), 551–555 (2003)Google Scholar
  43. 43.
    S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, L 1072–L 1074 (2004)Google Scholar
  44. 44.
    K. Ahadi, H. Kim, S. Stemmer, Spontaneous hall effects in the electron system at the SmTiO 3/EuTiO 3 interface. APL Mater. 6, 056102 (2011)Google Scholar
  45. 45.
    K. Ahadi, S. Stemmer, Novel metal-insulator transition at the SmTiO3/SrTiO3 interface. Phys. Rev. Lett. 118(23), 236803 (2017)Google Scholar
  46. 46.
    H.Y. Park, J.Y. Choi, M.K. Choi, K.H. Cho, S. Nahm, Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 Lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91(7), 2374–2377 (2008)Google Scholar
  47. 47.
    R.M. German, P. Suri, S.J. Park, Review: Liquid phase sintering. J. Mater. Sci. 44(1), 1–39 (2009)Google Scholar
  48. 48.
    L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures. J. Am. Ceram. Soc. 97(1), 1–27 (2014)Google Scholar
  49. 49.
    V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14(21), 477–485 (1926)Google Scholar
  50. 50.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)Google Scholar
  51. 51.
    R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358(6382), 136–138 (1992)Google Scholar
  52. 52.
    Z. Luo, T. Granzow, J. Glaum, W. Jo, J. Rödel, M. Hoffman, Effect of ferroelectric long-range order on the unipolar and bipolar electric fatigue in Bi1/2Na1/2TiO3-based lead-free piezoceramics. J. Am. Ceram. Soc. 94(11), 3927–3933 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringDefence Institute of Advanced TechnologyPuneIndia
  2. 2.Armament Research and Development EstablishmentPuneIndia

Personalised recommendations