Study of La-doped barium titanate ceramics obtained by laser sintering technique

  • Marcelo S. SilvaEmail author
  • D. V. Sampaio
  • N. R. S. Souza
  • C. Kucera
  • J. Ballato
  • R. S. Silva


This work studies the influence of laser sintering on the semiconducting properties of La-doped BaTiO3 (BTL) ceramics. The BTL powders were synthesized using a solid-state reaction method and sintered via a new laser sintering technique. In this technique, a CO2 laser is used as the main heating source and no atmosphere control was employed. The BTL laser-sintered ceramics exhibited high relative density and a crack-free homogeneous microstructures after sintering at a laser power density of 5.0 W/mm2 for 30 s. The samples exhibited a positive temperature coefficient of resistivity (PTCR) increase of two orders of magnitude, and a room-temperature resistivity of 105 Ω.cm, even when sintered in an open atmosphere. X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, and UV-Vis and impedance spectroscopy techniques were employed and results provided.


Barium Titanate Laser sintering Electrical properties 



The authors are thankful to CAPES (99999.008454/2014-00 and 88881.120970/2016-01) and CNPq/FAPITEC (409017/2016-7) Brazilian agencies for financial support. The Authors (CK and JB) also acknowledge the J. E. Sirrine Foundation for support.


  1. 1.
    A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications. 2nd ed. West Sussex (Wiley, New York, 2003)CrossRefGoogle Scholar
  2. 2.
    S.B. Deshpande, P.D. Godbole, Y.B. Khollam, H.S. Potdar, Characterization of barium Titanate: BaTiO3 (BT) ceramics prepared from sol-gel derived BT powders. J. Electroceram. 15(2), 103–108 (2005)CrossRefGoogle Scholar
  3. 3.
    Y.L. Chen, S.F. Yang, PTCR effect in donor doped barium titanate: Review of compositions, microstructures, processing and properties. Adv. Appl. Ceram. 110(5), 257–269 (2011)CrossRefGoogle Scholar
  4. 4.
    W. Heywang, Resistivity anomaly in doped barium Titanate. J. Am. Ceram. Soc. 47(10), 484–490 (1964)CrossRefGoogle Scholar
  5. 5.
    Y. Tsur, T.D. Dunbar, C.A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7(1), 25–34 (2001)CrossRefGoogle Scholar
  6. 6.
    J. Nowotny, Defect chemistery of BaTiO3. Solid State Ionics 49, 135–154 (1991)CrossRefGoogle Scholar
  7. 7.
    M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, Atomistic simulation of dopant incorporation in barium titanate. J. Am. Ceram. Soc. 84(2), 376–384 (2001)CrossRefGoogle Scholar
  8. 8.
    D.M. Smyth, The defect chemistry of donor-doped BaTiO3: A rebuttal. J. Electroceram. 9(3), 179–186 (2002)CrossRefGoogle Scholar
  9. 9.
    P. Fiorenza, R. Lo Nigro, P. Delugas, V. Raineri, A.G. Mould, D.C. Sinclair, Direct imaging of the core-shell effect in positive temperature coefficient of resistance-BaTiO3 ceramics. Appl. Phys. Lett. 95(14), 142904 (2009)CrossRefGoogle Scholar
  10. 10.
    M.S. Silva, S.T. Souza, D.V. Sampaio, J.C.A. Santos, E.J.S. Fonseca, R.S. Silva, Conductive atomic force microscopy characterization of PTCR-BaTiO3 laser-sintered ceramics. J. Eur. Ceram. Soc. 36(6), 1385–1389 (2016)CrossRefGoogle Scholar
  11. 11.
    R.S. Silva, A.C. Hernandes, Laser sintering of BaTiO3 ceramics obtained from nanometric powders. Mater. Sci. Forum 514-516, 1216–1220 (2006)CrossRefGoogle Scholar
  12. 12.
    L.M. Jesus, J.C.A. Santos, D.V. Sampaio, L.B. Barbosa, R.S. Silva, J.-C. M’Peko, Polymeric synthesis and conventional versus laser sintering of CaCu3Ti4O12 electroceramics: (micro)structures, phase development and dielectric properties. J. Alloys Compd. 654, 482–490 (2015)CrossRefGoogle Scholar
  13. 13.
    R.S. Silva, L.M. Jesus, T.C. Oliveira, D.V. Sampaio, J.C.A. Santos, A.C. Hernandes, Multifuncional translucent ferroelectric Ba1−xCaxTiO3 ceramics produced by laser sintering. J. Eur. Ceram. Soc. 36(16), 4023–4030 (2016)CrossRefGoogle Scholar
  14. 14.
    T.C. Oliveira, M.S. Silva, L.M. Jesus, D.V. Sampaio, J.C.A. Santos, N.R.S. Souza, et al., Laser sintering and radioluminescence emission of pure and doped Y2O3 ceramics. Ceram. Int. 40(10), 16209–16212 (2014)CrossRefGoogle Scholar
  15. 15.
    F.D. Morrison, D.C. Sinclair, A.R. West, Electrical and structural characterization of La-doped barium titanate ceramics. J. Appl. Phys. 86(11), 6355–6366 (1999)CrossRefGoogle Scholar
  16. 16.
    Y. Wenhu, P. Yongping, C. Xiaolong, W. Jinfei, Study of Reoxidation in heavily La-doped barium Titanate ceramics. J. Phys. Conf. Ser. 152, 012040 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Gao, S. Wu, Y. Zhang, H. Yang, X. Wang, Study on the microstructure and dielectric properties of X9R ceramics based on BaTiO3. Mater. Sci. Eng. 176(1), 68–71 (2011)CrossRefGoogle Scholar
  18. 18.
    D.V. Sampaio, N.R.S. Souza, J.C.A. Santos, D.C. Silva, E.J.S. Fonseca, C. Kucera, B. Faugas, J. Ballato, R.S. Silva, Translucent and persistent luminescent SrAl2O4:Eu2+Dy3+ ceramics. Ceram. Int. 42, 4306–4312 (2015)CrossRefGoogle Scholar
  19. 19.
    N.R.S. Souza, D.C. Silva, D.V. Sampaio, M.V.S. Rezende, C. Kucera, A.A. Trofimov, L.G. Jacobsohn, J. Ballato, R.S. Silva, Opt. Mater. 68, 2–6 (2017)CrossRefGoogle Scholar
  20. 20.
    P.P. Kumar, K.L. Yadav, Effect of yttrium on microstructure, dielectric, ferroelectric and optical properties of BaZr0.10Ti0.90O3 nanoceramics. Physica B 442, 39–43 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Schrader, D. Mienert, O.H. Tae-sik, H. Yoo, K.D. Becker, An optical, EPR and electrical conductivity study of blue barium titanate, BaTiO3. Solid State Sci. 10(6), 768–775 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Nanomateriais Funcionais, Departamento de FísicaUniversidade Federal de SergipeSão CristóvãoBrazil
  2. 2.Instituto Federal de EducaçãoCiência e Tecnologia do Sertão PernambucanoSalgueiroBrazil
  3. 3.Center for Optical Materials Science and Engineering Technologies (COMSET)Clemson UniversityAndersonUSA

Personalised recommendations