Advertisement

Solvothermal synthesis of Mn3O4 as an anode material for lithium ion batteries

  • Yun Yang
  • Shuijin Yang
  • Chuanqi Feng
  • Hao Zheng
  • Qinghua Xia
Article

Abstract

The nanoparticles of Mn3O4 has been self-assembly synthesized by the mixed solvothermal method. The PEO-PPO-PEO(P123) and hexamethylenetetramine (HMTA) were used as surfactant. The results showed that Mn3O4 samples with different morphologies were synthesized using different surfactant. The Mn3O4 took on morphology of hierarchical pores microspheres when P123 was used as surfactant. The as-prepared hierarchical pores microspheres structure interconnected voids consists of clustered together of nanoparticles in diameter of about 100–120 nm. When HMTA was used as surfactant, the morphology of Mn3O4 was flowers-like microspheres with grain diameter of 2 μm which were assembled from clustered nanosheets. The results of electrochemical testing showed that the pure Mn3O4 synthesized using P123 as surfactant (MO-1) behaved a higher reversible capacity and better cycling performance than those of sample synthesized using HMTA as surfactant (MO-2) and the Mn3O4 material reported in other articles at present.

Keywords

Inorganic compounds Chemical synthesis Electrochemical properties Anode material Mesoporous materials 

Notes

Acknowledgments

Financial support by the Natural Science Foundation of China (No. 21476063) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47, 290–2946 (2008)CrossRefGoogle Scholar
  2. 2.
    X. Gu, J. Yue, L. Li, H.T. Xue, J. Yang, X.B. Zhao, Electrochim. Acta 184, 250–256 (2015)CrossRefGoogle Scholar
  3. 3.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nature 407(6803), 496–499 (2000)CrossRefGoogle Scholar
  4. 4.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, J. Power Sources 97, 235–239 (2001)CrossRefGoogle Scholar
  5. 5.
    G. Wang, Y. Chen, K. Konstantinov, M. Lindsay, H. Liu, S. Dou, J. Power Sources 109(1), 142–147 (2002)CrossRefGoogle Scholar
  6. 6.
    Y.M. Kang, M.S. Song, J.H. Kim, H.S. Kim, M.S. Park, J.Y. Lee, H.K. Liu, S. Dou, Electrochim. Acta 50(18), 3667–3673 (2005)CrossRefGoogle Scholar
  7. 7.
    X. Gu, L. Chen, Z. Ju, H. Xu, J. Yang, Y. Qian, Adv. Funct. Mater. 23(32), 4049–4056 (2013)CrossRefGoogle Scholar
  8. 8.
    X. Gu, L. Chen, S. Liu, H. Xu, J. Yang, Y. Qian, J. Mater. Chem. A 23, 439–3444 (2014)Google Scholar
  9. 9.
    S. Lee, J. Ha, H. Cheng, J.W. Lee, T.S. Jang, Y.G. Jung, Y. Huang, J.A. Rogers, U. Paik, Adv. Energy Mater. 4 (2014)Google Scholar
  10. 10.
    K. Brezesinski, J. Haetge, J. Wang, S. Mascotto, C. Reitz, A. Rein, S.H. Tolbert, J. Perlich, B. Dunn, T. Brezesinski, Small 7(3), 407–414 (2011)CrossRefGoogle Scholar
  11. 11.
    J.S. Do, C.H. Weng, J. Power Sources 146(1-2), 482–486 (2005)CrossRefGoogle Scholar
  12. 12.
    X.Q. Yu, Y. He, J.P. Sun, K. Tang, H. Li, L.Q. Chen, X.J. Huang, Electrochem. Commun. 11(4), 791–794 (2009)CrossRefGoogle Scholar
  13. 13.
    H.L. Wang, L.F. Cui, Y.A. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, J. Am. Chem. Soc. 132(40), 13978–13980 (2010)CrossRefGoogle Scholar
  14. 14.
    Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, ACS Nano 4(6), 3187–3194 (2010)CrossRefGoogle Scholar
  15. 15.
    L. Li, Z. Guo, A. Du, H. Liu, J. Mater. Chem. 22(8), 3600–3605 (2012)CrossRefGoogle Scholar
  16. 16.
    J.Y. Qu, F. Gao, Q. Zhou, Z.Y. Wang, H. Hu, B.B. Li, W.B. Wan, X.Z. Wang, J.S. Qiu, Nanoscale 5, 2999–3005 (2013)CrossRefGoogle Scholar
  17. 17.
    Q. Hao, J. Wang, C. Xu, J. Mater. Chem. A 2(1), 87–93 (2014)CrossRefGoogle Scholar
  18. 18.
    S.Z. Huang, J. Jin, Y. Cai, Y. Li, H.Y. Tan, H.E. Wang, G. Van Tendeloo, B.-L. Su, Nanoscale 6(12), 6819–6827 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Gao, M.A. Lowe, H.D. Abruna, Chem. Mater. 23(13), 3223–3227 (2011)CrossRefGoogle Scholar
  20. 20.
    C.X. Guo, M. Wang, T. Chen, X.W. Lou, C.M. Li, Adv. Energy Mater. 1(5), 736–741 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Yue, X. Gu, L. Chen, N. Wang, X. Jiang, H. Xu, J. Yang, Y. Qian, J. Mater. Chem. A 2(41), 17421–17426 (2014)CrossRefGoogle Scholar
  22. 22.
    X. Gu, J. Yue, L. Chen, S. Liu, H. Xu, J. Yang, Y. Qian, X. Zhao, J. Mater. Chem. A 3(3), 1037–1041 (2015)CrossRefGoogle Scholar
  23. 23.
    L.G. Guo, Y. Ding, C.Q. Qin, W.L. Song, S.Q. Sun, K. Fang, W. Li, J. Du, F. Wang, J. Alloys Compd. 735, 209–217 (2018)CrossRefGoogle Scholar
  24. 24.
    I. Nam, N.D. Kim, G.-P. Kim, J. Park, J. Yi, J. Power Sources 244, 56–62 (2013)CrossRefGoogle Scholar
  25. 25.
    C.B. Wang, L.W. Yin, D. Xiang, Y.X. Qi, ACS Appl. Mater. Interfaces 4(3), 1636–1642 (2012)CrossRefGoogle Scholar
  26. 26.
    X.Q. Chen, H.B. Lin, X.W. Zheng, X. Cai, P. Xia, Y.M. Zhu, X.P. Li, W.S. Li, J. Mater. Chem. A 3(35), 18198–18206 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Liu, A.Y. Kim, L.Q. Wang, B.J. Palmer, Y.L. Chen, P. Bruinsma, B.C. Bunker, G.J. Exarhos, G.L. Graff, P.C. Rieke, G.E. Fryxell, J.W. Virden, B.J. Tarasevich, L.A. Chick, Adv. Colloid Interf. Sci. 69(1-3), 131–180 (1996)CrossRefGoogle Scholar
  28. 28.
    Z.Q. Sun, T. Liao, Y.H. Dou, S.M. Hwang, M.-S. Park, L. Jiang, J.H. Kim, S.X. Dou, Nat. Commun. 5, 1–9 (2014)Google Scholar
  29. 29.
    C.Q. Feng, W. Wang, X. Chen, S.Q. Wang, Z.P. Guo, Electrochim. Acta 178, 847–855 (2015)CrossRefGoogle Scholar
  30. 30.
    D.Y. Zhao, Q. Hao, C.X. Xu, Electrochim. Acta 180, 493–500, (2015)Google Scholar
  31. 31.
    S. Guo, W.Z. Sun, W.Y. Yang, Z.C. Xu, Q. Li, and J.K. Shang, ACS Appl. Mater. Interfaces 7, 26291–22630, (2015), 47CrossRefGoogle Scholar
  32. 32.
    C. Julien, M. Massot, C. Poinsignon, Spectrochim. Acta A 60(3), 689–700 (2004)CrossRefGoogle Scholar
  33. 33.
    S.Z. Huang, Y. Cai, J. Jin, J. Liu, Y. Li, Y. Yua, H.E. Wang, L.H. Chen, B.L. Su, Nano Energy 12, 833–844, (2015)CrossRefGoogle Scholar
  34. 34.
    C.F. Liu, H.Q. Song, C.K. Zhang, Y.G. Liu, C.P. Zhang, X.H. Nan, G.Z. Cao, Nano Res. 8(10), 3372–3383 (2015)CrossRefGoogle Scholar
  35. 35.
    E. Yavuz, Ş. Tokalıoğlu, H. Şahan, Ş. Patat, Food Chem. 194, 463–469 (2016)CrossRefGoogle Scholar
  36. 36.
    V.C. Bose, V.B. Optical, Phys. E. 66, 24–32 (2015)CrossRefGoogle Scholar
  37. 37.
    A. Ejigu, M. Edwards, D.A. Walsh, ACS Catal. 5(12), 7122–7130 (2015)CrossRefGoogle Scholar
  38. 38.
    D. Pasero, N. Reeves, A.R. West, J. Power Sources 141(1), 156–158 (2005)CrossRefGoogle Scholar
  39. 39.
    L.Z. Zhang, L.F. Xiao, Y.Y. Yang, J. Yin, Q. Li, J. Power Sources 194, 1089–1093 (2009)CrossRefGoogle Scholar
  40. 40.
    M.H. Alfaruqi, J. Gim, S.J. Kim, J.J. Song, P.T. Duong, J. Jo, J.P. Baboo, Z.L. Xiu, V. Mathew, and J. Kim, Chem. Eur. J. 22, 2039–2045, (2016)Google Scholar
  41. 41.
    G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Chem. Mater. 22, 5306–5313, (2010), 18CrossRefGoogle Scholar
  42. 42.
    Y. Yang, Y. Lu, W. Wang, C.Q. Feng, S.J. Yang, J. Nanosci. Nanotechnol. 15, 1–7 (2015)CrossRefGoogle Scholar
  43. 43.
    Y.H. Zhao, G. Chen, C.H. Yan, C. Lv, R. Wang, J.X. Sun, RSC Adv. 5(128), 106206–106212 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yun Yang
    • 1
  • Shuijin Yang
    • 2
  • Chuanqi Feng
    • 1
  • Hao Zheng
    • 1
  • Qinghua Xia
    • 1
  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for Synthesis and Applications of Organic Functional MoleculesHubei UniversityWuhanChina
  2. 2.Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal UniversityHuangshiChina

Personalised recommendations