Advertisement

Effects of Al3+ substitution on the luminescence properties of LuNbO4 doped with Eu3+ and Tb3+ ions

  • Min Hyuk Im
  • Jiwon Kim
  • Young Jin Kim
Article
  • 10 Downloads

Abstract

The effect of Al3+ substitution on the enhancement of the luminescence of Lu1–xAlxNbO4:Eu3+ and Lu1–xAlxNbO4:Tb3+ was investigated. X-ray diffraction patterns confirmed that the Eu3+, Tb3+, and Al3+ ions were fully incorporated into the Lu3+ sites. In the case of Lu1–xAlxNbO4:Eu3+, the predominant red emission (614 nm) was assigned to the 5D0 → 7F2 transition of Eu3+ and for x = 0–0.05, its intensity increased up to ~125 and 108% under 395 nm (7F0  5L6) and a charge transfer band excitation, respectively. For Lu1–xAlxNbO4:Tb3+, the strongest emission band peaking at 551 nm was attained in the green region among multiple emission bands corresponding to the 5D4 → 7FJ transitions of Tb3+. Increasing the x values from 0 to 0.05 increased the green emission significantly by ~137%. These phenomena were explained by the local structural distortions and crystal field asymmetry surrounding Eu3+ and Tb3+, which were attributed to a large difference in the ionic radii of Al3+ and Lu3+.

Keywords

Lutetium niobate Luminescence Phosphor Europium Terbium 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030979). This work was supported by Kyonggi University’s Graduate Research Assistantship 2018.

References

  1. 1.
    V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink, Chem. Mater. 21(2), 316–325 (2009)CrossRefGoogle Scholar
  2. 2.
    W.B. Park, S.P. Singh, K.S. Sohn, J. Am. Ceram. Soc. 136, 2363 (2014)Google Scholar
  3. 3.
    Y.W. Jung, B. Lee, S.P. Singh, K.S. Sohn, Opt. Express 18(17), 17805 (2010)CrossRefGoogle Scholar
  4. 4.
    S.J. Lee, S.H. Hong, Y.J. Kim, J. Electrochem. Soc. 159(5), J163–J167 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Park, W. Jung, Y.J. Kim, J. Am. Ceram. Soc. 100(5), 2136–2143 (2017)CrossRefGoogle Scholar
  6. 6.
    J.K. Park, S.J. Lee, Y.J. Kim, Cryst. Growth Des. 13(12), 5204–5210 (2013)CrossRefGoogle Scholar
  7. 7.
    E.Y. Lee, Y.J. Kim, Electrochem. Solid-State Lett. 13(9), J110 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Nazarov, Y.J. Kim, E.Y. Lee, K.–.I. Min, M.S. Jeong, S.W. Lee, D.Y. Noh, J. Appl. Phys. 107(10), 103104–103101 (2010)CrossRefGoogle Scholar
  9. 9.
    E.Y. Lee, M. Nazarov, Y.J. Kim, J. Eletrochem. Soc. 157(3), J102 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Luo, Z. Xia, J. Phys. Chem. C 118, 23297 (2014)CrossRefGoogle Scholar
  11. 11.
    P. Sun, P. Dai, J. Yang, C. Zhao, X. Zhang, Ceram. Int. 41(2), 3009–3016 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Park, Y.J. Kim, Mater. Res. Bull. 96, 270–274 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Xiao, B. Yan, J. Non-Cryst. Solids 351(46-48), 3634–3639 (2005)CrossRefGoogle Scholar
  14. 14.
    S.K. Mahesh, P.P. Rao, T.L. Francis, V.R. Reshmi, P. Koshy, Mater. Lett. 120, 115–117 (2014)CrossRefGoogle Scholar
  15. 15.
    A.H. Krumpel, P. Boutinaud, E. van der Kolk, P. Dorenbos, J. Lumin. 130(8), 1357–1365 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Ivanova, S. Ricote, W.A. Meulenberg, R. Haugsrud, M. Ziegner, Solid State Ionics 213, 45–52 (2012)CrossRefGoogle Scholar
  17. 17.
    J.M. Jehng, I.E. Wachs, Chem. Mater. 3(1), 100–107 (1991)CrossRefGoogle Scholar
  18. 18.
    O. Yamaguchi, K. Matsui, T. Kawabe, J. Am. Ceram. Soc. 68, C275 (1985)Google Scholar
  19. 19.
    K.N. Kumar, R. Padma, J.L. Rao, M. Kang, RSC Adv. 6(59), 54525–54538 (2016)CrossRefGoogle Scholar
  20. 20.
    A.K. Parchur, A.I. Prasad, A.A. Ansari, S.B. Rai, R.S. Ningthoujam, Dalton Trans. 41, 11032 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Zhang, Z. Zhao, X. Zhang, A. Marathe, D.B. Cordes, B. Weeks, J. Chaudhuri, J. Mater. Chem. C 1(43), 7202 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Advanced Materials EngineeringKyonggi UniversitySuwonKorea

Personalised recommendations