Advertisement

Determination of polaronic conductivity in disordered double perovskite La2CrMnO6

  • Dev K. MahatoEmail author
  • Andrzej Molak
  • Anna Z. Szeremeta
  • Irena Gruszka
  • Pawel Zajdel
  • Michal Pilch
  • Janusz Koperski
Article
  • 60 Downloads

Abstract

Double perovskite La2CrMnO6 ceramics was sintered using standard high temperature route in ambient air. The orthorhombic Pbnm cell characterized by a total disorder between Cr and Mn ions was determined using an XRD powder test. The grain morphology, porosity and chemical composition were determined using scanning electron microscopy. The X-ray photoemission spectroscopy showed several contributions to O 1 s, La 3d, Mn 2p, and Cr 2p core lines related to the occurrence of multiple ionic states. The electrical permittivity, modulus, AC and DC conductivity were measured in ranges of f = 20 Hz – 1 MHz and 76–440 K. The electrical transport mechanism was attributed to the small polarons. The nearest neighbor hopping occurred in the range 170 to 440 K. The variable range hoping, attributed to the Fermi glass features and disorder, was detected in the range 100 to 160 K. The relaxation process related to the temperature-independent activation energy was deduced from the electric modulus scaling.

Keywords

Sintering Solid state synthesis Electrical properties La2CrMnO6 ceramics 

Notes

Acknowledgments

The first author acknowledges the Directorate of Extramural Research & Intellectual Property Rights (ER & IPR), Defence Res & Dev Orgn (DRDO) of India under grant no. ERIP/ER/1406036/M/01/1566. This research work was performed also under research program 1S-0317-500-1-05-05 of the Institute of Physics, University of Silesia, Poland.

References

  1. 1.
    K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395(6703), 677–680 (1998)CrossRefGoogle Scholar
  2. 2.
    H. Kawanaka, I. Hase, S. Toyama, Y. Nishihara, J. Phys. Soc. Jpn. 68(9), 2890–2893 (1999)CrossRefGoogle Scholar
  3. 3.
    K.I. Kobayashi, T. Kimura, Y. Tomioka, H. Sawada, K. Terakura, Phys. Rev. B Condens. Matter 59(17), 11159–11162 (1999)CrossRefGoogle Scholar
  4. 4.
    D.K. Mahato, T.P. Sinha, J. Alloys Compd. 634, 246–252 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, M. Takano, J. Am. Chem. Soc. 127(24), 8889–8892 (2005)CrossRefGoogle Scholar
  6. 6.
    V.L.J. Joly, P.A. Joy, S.K. Date, Phys. Rev. B 65(18), 184416–184411 (2002)CrossRefGoogle Scholar
  7. 7.
    N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Adv. Mater. 17(18), 2225–2227 (2005)CrossRefGoogle Scholar
  8. 8.
    A.K. Biswal, J. Ray, P.D. Babu, V. Siriguri, P.N. Vishwakarma, J. Appl. Phys. 115(19), 194106 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Hèbert, C. Martin, A. Maignan, R. Retoux, M. Hervieu, N. Nguyen, B. Raveau, Phys. Rev. B 65(10), 104420–104421 (2002)CrossRefGoogle Scholar
  10. 10.
    T. Wenyi, Z. Qin, Y. Han, Z. Xiufang, L. Hongy, Int. J. Hydrogen Energ. 37(9), 7398–7404 (2012)CrossRefGoogle Scholar
  11. 11.
    J.C. Ruiz-Morales, J. Canales-Vázquez, D. Marrero-López, J.T.S. Irvine, P. Núňez, Electrochim. Acta 52(25), 7217–7225 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Vasala, M. Karppinen, Prog. Solid St. Chem. 43(1-2), 1–36 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Artini, J. Eur. Ceram. Soc. 37(2), 427–440 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Sun, X. Xu, Y. Zhang, J. Phys. Condens. Matter 12(50), 10475–10480 (2000)CrossRefGoogle Scholar
  15. 15.
    R. Laiho, K.G. Lisunov, E. Lahderanta, V.N. Stamov, V.S. Zakhvalinskii, J. Phys. Condens. Matter 13(6), 1233–1246 (2001)CrossRefGoogle Scholar
  16. 16.
    J.P. Palakkal, C.R. Sankar, A.P. Paulose, M. Valant, A. Badasyan, M.R. Varma, Mat. Res. Bull. 100, 226–233 (2018)CrossRefGoogle Scholar
  17. 17.
    J. P. Palakkal, C. R. Sankar, M. R. Varma, J. Appl. Phys. 122 073907 (2017)Google Scholar
  18. 18.
    M. Hrovat, S. Bernik, J. Holc, D. Kuscer, D. Kolar, J. Mater. Sci. Lett. 16(2), 143–146 (1997)CrossRefGoogle Scholar
  19. 19.
    S. Estemirova, A. Fetisov, V. Balakirev, S. Titova, J. Supercond. Nov. Magn. 20(2), 113–116 (2007)CrossRefGoogle Scholar
  20. 20.
    U.H. Bents, Phys. Rev. B 106(2), 225–230 (1957)CrossRefGoogle Scholar
  21. 21.
    D.V. Karpinsky, I.O. Troyanchuk, V.V. Sikolenko, J. Phys.: Condens. Mat. 19, 036220–036221 (2007)Google Scholar
  22. 22.
    D. Singh, A. Mahajan, J. Alloys Compd. 644, 172–179 (2015)CrossRefGoogle Scholar
  23. 23.
    P. Barrozo, J. A. Aguiar, J. Appl. Phys. 113 17E309 (2013)Google Scholar
  24. 24.
    J.P. Palakkal, P.N. Lekshmi, S. Thomas, K.G. Suresh, M.R. Varma, RSC Adv. 5(128), 105531–105536 (2015)CrossRefGoogle Scholar
  25. 25.
    E. Ksepko, E. Talik, A. Ratuszna, A. Molak, Z. Ujma, I. Gruszka, J. Alloys Compd. 386(1-2), 35–42 (2005)CrossRefGoogle Scholar
  26. 26.
    A. Molak, M. Pawełczyk, Ferroelectrics 367(1), 179–189 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z. Ujma, S. St, Ionics 176(15-16), 1439–1447 (2005)CrossRefGoogle Scholar
  28. 28.
    A. Molak, E. Talik, M. Kruczek, M. Paluch, A. Ratuszna, Z. Ujma, Mater. Sci. Eng. B 128(16), 16–24 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Molak, Z. Ujma, M. Pilch, I. Gruszka, M. Pawełczyk, Ferroelectrics 464(1), 59–71 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Pilch, A. Molak, J. Koperski, P. Zajdel, 90 112 (2017)Google Scholar
  31. 31.
    D.N. Singh, T.P. Sinha, D.K. Mahato, J. Alloys Compd. 729, 1226–1233 (2017)CrossRefGoogle Scholar
  32. 32.
    F. Jin, Y. Shen, R. Wang, T. He, J. Power Sources 234, 244–251 (2013)CrossRefGoogle Scholar
  33. 33.
    R. I. Dass, J. Q. Yan, J. B. Goodenough, Phys. Rev. B 68 064415 (2003)Google Scholar
  34. 34.
    H.M. Rietveld, J. Appl. Crystallogr. 2(65), 65–71 (1969)CrossRefGoogle Scholar
  35. 35.
    J. Rodriguez-Carvajal, Newsletter 26(12) (2001)Google Scholar
  36. 36.
    S. Gražulis, A. Daškevic, A. Merkys, D. Chateigner, L. Lutterotti, M. Quirós, N.R. Serebryanaya, P. Moeck, R.T. Downs, A. LeBail, Nucleic Acids Res. 40(D1), D420–D427 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Grazulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. Butkus, P. Moeckg, A. Le Bail, J. Appl. Crystallogr. 42(4), 726–729 (2009)CrossRefGoogle Scholar
  38. 38.
    R. I. Dass, J. B. Goodenough, Phys. Rev. B 67 014401 (2003)Google Scholar
  39. 39.
    C.L. Bull, D. Gleeson, K.S. Knight, J. Phys. Condens. Matter 15(29), 4927–4936 (2003)CrossRefGoogle Scholar
  40. 40.
    P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Crystallogr. 20(79), 79–83 (1987)CrossRefGoogle Scholar
  41. 41.
    J.F. Moulder, Handbook of X-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data. Phys. Electronics. (1995)Google Scholar
  42. 42.
    R.D. Shannon, Acta Cryst. A 32(5), 751–767 (1976)Google Scholar
  43. 43.
    I.O. Troyanchuk, D.D. Khalyavin, J.W. Lynn, R.W. Erwin, Q. Huang, H. Szymczak, R. Szymczak, M. Baran, J. Appl. Phys. 88(1), 360–367 (2000)CrossRefGoogle Scholar
  44. 44.
    S. Yáňez-Vilar, E.D. Mun, V.S. Zapf, B.G. Ueland, J.S. Gardner, J.D. Thompson, J. Singleton, M. Sánchez-Andújar, J. Mira, N. Biskup, M.A. Señarís-Rodríguez, C.D. Batista, Phys. Rev. B 84(13), 134427–134421 (2011)CrossRefGoogle Scholar
  45. 45.
    P.M. Woodward, Acta Cryst. B 53(1), 44–66 (1997)Google Scholar
  46. 46.
    D. Serrate, J.M. De Teresa, M.R. Ibarra, J. Phys. Condens. Matter 19(2), 023201 (2007)CrossRefGoogle Scholar
  47. 47.
    J. Hong, A. Stroppa, J. I˜niguez, S. Picozzi, D. Vanderbilt, Phys. Rev. B 85 054417 (2012)Google Scholar
  48. 48.
    Y.K. Wang, P.H. Lee, G.Y. Guo, Phys. Rev. B 80(22), 224418 (2009)CrossRefGoogle Scholar
  49. 49.
    A. Molak, M. Pilch, J. Appl. Phys. 119(20), 204901 (2016)CrossRefGoogle Scholar
  50. 50.
    M. Szubka, E. Talik, A. Molak, S. Turczyński, D. A. Pawlak 45, 1309 (2010)Google Scholar
  51. 51.
    M. Pilch, P.D. Thesis, University of Silesia. Katowice (2010)Google Scholar
  52. 52.
    M. Stojanovic, Ph. D. Thesis, University of Toronto (1998). https://tspace.library.utoronto.ca
  53. 53.
    M. Pilch, A. Molak, Phase Transit. 87(10-11), 1114–1128 (2014)CrossRefGoogle Scholar
  54. 54.
    X. Liu, W. Su, Z. Lu, Chem. Phys. 82, 327 (2003)Google Scholar
  55. 55.
    N. Das, S. Singh, A.G. Joshi, M. Thirumal, V.R. Reddy, L.C. Gupta, A.K. Ganguli, Inorg. Chem. 56(21), 12712–12718 (2017)CrossRefGoogle Scholar
  56. 56.
    K. Rida, A. Benabbas, F. Bouremmad, M. A. Peña, A. Martínez-Arias, Catalysis Commun. 7 963 (2006)Google Scholar
  57. 57.
    N. Uekawa, K. Kaneko, J. Phys. Chem. 100(10), 4193–4198 (1996)CrossRefGoogle Scholar
  58. 58.
    A. Molak, K. Ławniczak-Jabłońska, P. Nachimuthu, R.C.C. Perera, Ferroelectrics 418(1), 14–18 (2011)CrossRefGoogle Scholar
  59. 59.
    H. Chen, A. Mills, Phys. Rev. B 93(10), 104111 (2016)CrossRefGoogle Scholar
  60. 60.
    A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, J. Phys. D. Appl. Phys. 38 1450 (2005), 9, 1460CrossRefGoogle Scholar
  61. 61.
    J. P. Palakkal, C .R. Sankar, A. P. Paulose, M. R. Varma, J. Alloys Compd. 743, 403 (2018), 409Google Scholar
  62. 62.
    Y. Lyanda-Geller, S.H. Chun, M.B. Salamon, P.M. Goldbart, P.D. Han, Y. Tomioka, A. Asamitsu, Y. Tokura, Phys. Rev. B 63(184426) (2001)Google Scholar
  63. 63.
    A. Molak, M. Paluch, S. Pawlus, Z. Ujma, M. Pawelczyk, I. Gruszka, Phase Transit. 79(6-7), 447–460 (2006)CrossRefGoogle Scholar
  64. 64.
    M. Wubbenhorst, J. Van Turnhout, J. Non-Cryst. Solids 305(40), 40–49 (2002)CrossRefGoogle Scholar
  65. 65.
    A. Banerjee, S. Pal, E. Rozenberg, B.K. Chaudhuri, J. Phys. Condens. Matter 13(42), 9489–9504 (2001)CrossRefGoogle Scholar
  66. 66.
    A. Banerjee, S. Pal, B.K. Chaudhuri, J. Chem. Phys. 115(3), 1550–1558 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dev K. Mahato
    • 1
    Email author
  • Andrzej Molak
    • 2
  • Anna Z. Szeremeta
    • 2
  • Irena Gruszka
    • 2
  • Pawel Zajdel
    • 2
  • Michal Pilch
    • 2
  • Janusz Koperski
    • 2
  1. 1.Department of PhysicsNational Institute of Technology PatnaPatnaIndia
  2. 2.Institute of PhysicsUniversity of SilesiaChorzówPoland

Personalised recommendations