Advertisement

Journal of Electroceramics

, Volume 41, Issue 1–4, pp 67–72 | Cite as

Improvement in microwave dielectric properties of Sr2TiO4 ceramics through post-annealing treatment

  • Yu Luo
  • Jie ZhangEmail author
  • Zhenxing YueEmail author
  • Longtu Li
Article
  • 106 Downloads

Abstract

Sr2TiO4 ceramics were synthesized via the conventional solid-state reaction process, and the effects of post-annealing treatment in air on the microwave dielectric properties and defect behavior of title compound were investigated systematically. The Q × f values could be effectively improved from 107,000 GHz to 120,300 GHz for the specimens treated at 1450 °C for 16 h. The thermally stimulated depolarization currents (TSDC) revealed two kinds of defect dipoles [\( \left({\mathrm{Ti}}_{\mathrm{Ti}}^{\hbox{'}}-{V}_{\mathrm{O}}^{\bullet \bullet}\right) \) and \( \left({V}_{\mathrm{Sr}}^{"}-{V}_{\mathrm{O}}^{\bullet \bullet}\right) \)] and oxygen vacancies \( \left({V}_{\mathrm{O}}^{\bullet \bullet}\right) \) were considered the main defects in Sr2TiO4. Under a post-annealing treatment in air, the concentrations of such defects in the ceramics decreased. Meanwhile, the impedance spectrum revealed the activation energy of the grain boundaries increased. These evidences could account for the improvement of Q × f values. Accompanied with a high εr of 40.4 and a large τf of 126 ppm/°C, the enhanced high-Q Sr2TiO4 ceramics can be good candidates for applications in wireless passive temperature sensing.

Keywords

Microwave dielectrics Post-annealing Thermally-stimulated relaxations Defects 

Notes

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant No. 2017YFB0406301), the National Natural Science Foundation of China (Grant No.51472138) and China Postdoctoral Science Foundation (Grant No. 2016 M601047).

References

  1. 1.
    M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, UK, 2010)Google Scholar
  2. 2.
    H.T. Cheng, S. Ebadi, X. Gong, IEEE Antennas Wireless Propag. Lett. 11, 369–372 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Zhang, Z.X. Yue, Y.Y. Zhou, B. Peng, X.H. Zhang, L.T. Li, J. Eur. Ceram. Soc. 36(8), 1923–1930 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Cheng, S. Ebadi, X. Ren, Y. Yusuf, X. Gong, IEEE AP-S Int. Symp. 1350 (2011)Google Scholar
  5. 5.
    Y. Wang, Y. Jia, Q. Chen, Y. Wang, Sensors 8(12), 7982–7995 (2008)CrossRefGoogle Scholar
  6. 6.
    K. Wakino, Ferroelectrics 91(1), 69–86 (1989)CrossRefGoogle Scholar
  7. 7.
    A. Belous, O. Ovchar, J. Am. Ceram. Soc. 89(11), 3441–3445 (2006)CrossRefGoogle Scholar
  8. 8.
    B. Liu, L. Li, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 100(2), 496–500 (2017)CrossRefGoogle Scholar
  9. 9.
    W. Liu, C.A. Randall, J. Am. Ceram. Soc. 91(10), 3245–3250 (2008)CrossRefGoogle Scholar
  10. 10.
    W. Liu, C.A. Randall, J. Am. Ceram. Soc. 91(10), 3251–3257 (2008)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, Z.X. Yue, Y.Y. Zhou, X.H. Zhang, L.Y. Li, J. Am. Ceram. Soc. 98(12), 3942–3947 (2015)CrossRefGoogle Scholar
  12. 12.
    B.W. Hakki, P.D. Coleman, IRE Trans. Microwave Theory Tech. 8(4), 402–410 (1960)Google Scholar
  13. 13.
    W.E. Courtney, IEEE Trans. Microwave Theory Tech. 18(8), 476–485 (1970)CrossRefGoogle Scholar
  14. 14.
    J. Krupka, K. Derzakowski, B. Riddle, J. Baker-Jarvis, Meas. Sci. Technol. 9(10), 1751–1756 (1998)CrossRefGoogle Scholar
  15. 15.
    A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties and Applications (Wiley, New York, 2003)CrossRefGoogle Scholar
  16. 16.
    A. Templeton, X. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, N.M.N. Alford, J. Am. Ceram. Soc. 83(1), 95–100 (2000)CrossRefGoogle Scholar
  17. 17.
    R.C. Pullar, S.J. Penn, X. Wang, I.M. Reaney, N.M.N. Alford, J. Eur. Ceram. Soc. 29(3), 419–424 (2009)CrossRefGoogle Scholar
  18. 18.
    T. Teranishi, R. Kanemoto, H. Hayashi, A. Kishimoto, J. Am. Ceram. Soc. 100(3), 1037–1043 (2017)CrossRefGoogle Scholar
  19. 19.
    S.H. Yoon, C.A. Randall, K.H. Hur, J. Am. Ceram. Soc. 93, 1950 (2010)Google Scholar
  20. 20.
    P. Bräunlich, Topics in Applied Physics: Thermally Stimulated Relaxation in Solids. 37, (1979)Google Scholar
  21. 21.
    I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063 (2006)Google Scholar
  22. 22.
    H. Tamura, J. Eur. Ceram. Soc. 26(10-11), 1775–1780 (2006)CrossRefGoogle Scholar
  23. 23.
    J.D. Breeze, J.M. Perkins, D.W. McComb, N.M. Alford, J. Am. Ceram. Soc. 92(3), 671–674 (2009)CrossRefGoogle Scholar
  24. 24.
    A.R. West, D.C. Sinclair, N. Hirose, J. Electroceram. 1(1), 65–71 (1997)CrossRefGoogle Scholar
  25. 25.
    G.Y. Yang, E.C. Dickey, C.A. Randall, D.E. Barber, P. Pinceloup, M.A. Henderson, R.A. Hill, J.J. Beeson, D.J. Skamser, J. Appl. Phys. 96(12), 7492–7499 (2004)CrossRefGoogle Scholar
  26. 26.
    S.H. Yoon, C.A. Randall, K.H. Hur, J. Am. Ceram. Soc. 92(8), 1758–1765 (2009)CrossRefGoogle Scholar
  27. 27.
    H.L. Gong, X.H. Wang, S.P. Zhang, Z.B. Tian, L.T. Li, J. Appl. Phys. 112(11), 114119 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations