Advertisement

Journal of Electroceramics

, Volume 43, Issue 1–4, pp 84–91 | Cite as

Facile synthesis of Li2ZrO3-modified LiNi0.5Mn0.5O2 cathode material from a mechanical milling route for lithium-ion batteries

  • Wenli Yao
  • Huajun Zhang
  • Shengwen ZhongEmail author
  • Jiwen Li
  • Lingshun Wang
Article

Abstract

Li2ZrO3-modified LiNi0.5Mn0.5O2 materials with improved electrochemical performance were directly synthesized by a simple mechanical milling route with ZrO2, Li2CO3 and Ni0.5Mn0.5(OH)2 precursors and a high temperature calcination in air atmosphere. The influences of ZrO2 contents on the microstructures and electrochemical properties of LiNi0.5Mn0.5O2 electrode materials were investigated through X-Ray diffraction, scanning electron microscope, energy dispersive spectroscopy and electrochemical tests. The results showed that ZrO2 can be completely converted into Li2ZrO3 in the form of a coating layer covering the surface of LiNi0.5Mn0.5O2 after a heat treatment process. Li2ZrO3 coating can be formed and dispersed homogenously on the surface of 1 mol% Li2ZrO3-modified LiNi0.5Mn0.5O2 materials. The electrochemical tests confirmed 1 mol% Li2ZrO3-modified LiNi0.5Mn0.5O2 materials exhibited the best discharge capacity of 158.3 mAh g−1 after 100 cycles between 2.75 and 4.35 V at 0.2 C, with an excellent capacity retention of 97.2% and higher discharge capacity at −20 °C than that of the pristine LiNi0.5Mn0.5O2. The enhanced cycling stability and low temperature performance may be attributed to the remarkable synergistic effects of Li2ZrO3 protective layer and its homogeneous distribution on LiNi0.5Mn0.5O2 surface with low Li/Ni cation mixing, high electric conductivity and good structure stability.

Keywords

LiNi0.5Mn0.5O2 Li2ZrO3 Surface modification Low-temperature performance Lithium-ion batteries 

Notes

Acknowledgments

The authors are grateful for the financial support of this work by National Natural Science Fund of China (No.51372104), Jiangxi Province Science and Technology Plan Project (No.20141BBE50019), Foundation of Jiangxi Educational Committee (No. GJJ160601), Finance and Education Plan of Ganzhou City (No.197[2017]) and Doctoral scientific research foundation of Jiangxi University of Science and Technology (No. jxxjbs16025).

Supplementary material

10832_2018_158_MOESM1_ESM.jpg (444 kb)
Fig. S1 SEM image and the corresponding element mapping of O, Ni, Mn, Zr and EDS images of 1-LZO@LNMO material. (JPG 443 kb)
10832_2018_158_MOESM2_ESM.jpg (366 kb)
Fig. S2 SEM image and the corresponding element mapping of Zr for LZO-modified LiNi0.5Mn0.5O2 materials. (JPG 365 kb)
10832_2018_158_MOESM3_ESM.jpg (119 kb)
Fig. S3 Rate capability of LZO-modified LiNi0.5Mn0.5O2 materials from 0.2C to 5C between 2.75 and 4.35 V. (JPG 119 kb)

References

  1. 1.
    P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210–1211 (2014)Google Scholar
  2. 2.
    Z.Q. Yan, W.L. Yao, L. Hu, D.D. Liu, C.D. Wang, C.S. Lee, Nanoscale 7, 5563–5577 (2015)Google Scholar
  3. 3.
    Y. Yang, S. Li, Q. Zhang, Y. Zhang, S. Xu, Ind. Eng. Chem. Res. 56, 175–182 (2017)Google Scholar
  4. 4.
    T.E. Quine, M.J. Duncan, A.R. Armstrong, A.D. Robertson, P.G. Bruce, J. Mater. Chem. 10, 2838–2841 (2007)Google Scholar
  5. 5.
    Y. Hinuma, Y.S. Meng, K. Kang, G. Ceder, Chem. Mater. 19, 1790–1800 (2007)Google Scholar
  6. 6.
    X.L. Meng, S.M. Dou, W.L. Wang, J. Power Sources 184, 489–493 (2008)Google Scholar
  7. 7.
    M. Yoncheva, R. Stoyanova, E. Zhecheva, R. Alcantara, J.L. Tirado, J. Alloys Compd. 475, 96–101 (2009)Google Scholar
  8. 8.
    K. Sakamoto, M. Hirayama, H. Konishi, N. Sonoyama, N. Dupre, D. Guyomard, K. Tamura, J. Mizuki, R. Kanno, Phys. Chem. Chem. Phys. 12, 3815–3823 (2010)Google Scholar
  9. 9.
    Y.M. Liu, B.L. Chen, F. Cao, X. Zhao, J. Yuan, J. Mater. Chem. 21, 10437–10441 (2011)Google Scholar
  10. 10.
    F. Li, G. Yang, G. Jia, X. Shangguan, Q. Zhuge, B. Bai, J. Appl. Electrochem. 47, 1189–1201 (2017)Google Scholar
  11. 11.
    Y. Ding, D. Mu, B. Wu, R. Wang, Z. Zhao, F. Wu, Appl. Energy 195, 586–599 (2017)Google Scholar
  12. 12.
    H. Kobayashi, H. Sakaebe, H. Kageyama, K. Tatsumi, Y. Arachi, J. Mater. Chem. 13, 590–595 (2003)Google Scholar
  13. 13.
    Z. Wang, E. Liu, L. Guo, C. Shi, C. He, J. Li, N. Zhao, Surf. Coat. Technol. 235, 570–576 (2013)Google Scholar
  14. 14.
    J.Z. Kong, C. Ren, G.A. Tai, X. Zhang, A.D. Li, D. Wu, H. Li, F. Zhou, J. Power Sources 266, 433–439 (2014)Google Scholar
  15. 15.
    J. Cho, J.K. Yong, B. Park, Chem. Mater. 32, 3788–3791 (2000)Google Scholar
  16. 16.
    W. Feng, W. Meng, Y. Su, C. Shi, B. Xu, J. Power Sources 191, 628–632 (2009)Google Scholar
  17. 17.
    H. Liu, G.X. Wang, D. Wexler, J.Z. Wang, H.K. Liu, Electrochem. Commun. 10, 165–169 (2008)Google Scholar
  18. 18.
    J.Q. Zhao, Y. Wang, Nano Energy 2, 882–889 (2013)Google Scholar
  19. 19.
    H. Han, F. Qiu, Z. Liu, X. Han, Ceram. Int. 41, 8779–8784 (2015)Google Scholar
  20. 20.
    E. Jung, Y.J. Park, J. Electroceram. 29, 23–28 (2012)Google Scholar
  21. 21.
    B.J. Hwang, S.K. Hu, C.H. Chen, C.Y. Chen, H.S. Sheu, J. Power Sources 174, 61–765 (2007)Google Scholar
  22. 22.
    S.K. Hu, G.H. Cheng, M.Y. Cheng, B.J. Hwang, R. Santhanam, J. Power Sources 188, 564–569 (2009)Google Scholar
  23. 23.
    J.Z. Kong, S.S. Wang, G.A. Tai, L. Zhu, L.G. Wang, H.F. Zhai, D. Wu, A.D. Li, H. Li, J. Alloys Compd. 657, 593–600 (2016)Google Scholar
  24. 24.
    L. Li, Z. Chen, Q. Zhang, M. Xu, X. Zhou, H. Zhu, K. Zhang, J. Mater. Chem. A 3, 894–904 (2015)Google Scholar
  25. 25.
    W. Wang, Z. Yin, Z. Wang, X. Li, H. Guo, D. Wang, J. Alloys Compd. 646, 454–460 (2015)Google Scholar
  26. 26.
    J. Wang, Y. Yu, B. Li, T. Fu, D. Xie, J. Cai, J. Zhao, Phys. Chem. Chem. Phys. 17, 32033–32043 (2015)Google Scholar
  27. 27.
    W. Wang, Z. Yin, J. Wang, Z. Wang, X. Li, H. Guo, J. Alloys Compd. 651, 737–743 (2015)Google Scholar
  28. 28.
    S.B. Lim, H. Lee, Y.J. Park, J. Electroceram. 37, 92–97 (2016)Google Scholar
  29. 29.
    C. Wang, L. Chen, H. Zhang, Y. Yang, F. Wang, F. Yin, G. Yang, Electrochim. Acta 119, 236–242 (2014)Google Scholar
  30. 30.
    D. Wang, X. Li, Z. Wang, H. Guo, Z. Huang, L. Kong, J. Ru, J. Alloys Compd. 647, 612–619 (2015)Google Scholar
  31. 31.
    Y. Xu, Y. Liu, Z. Lu, H. Wang, D. Sun, G. Yang, Appl. Surf. Sci. 361, 150–156 (2016)Google Scholar
  32. 32.
    S. Zhong, P. Chen, W. Yao, ECS Electrochem. Lett. 4, A45–A48 (2015)Google Scholar
  33. 33.
    S. Zhong, M. Lai, W. Yao, Z. Li, Electrochim. Acta 212, 343–351 (2016)Google Scholar
  34. 34.
    H.Q. Liu, Y.M. Hu, Y.B. Li, H.S. Gu, Mater. Chem. Phys. 138, 440–443 (2013)Google Scholar
  35. 35.
    H. Gwon, S.W. Kim, Y.U. Park, J. Hong, G. Ceder, S. Jeon, K. Kang, Inorg. Chem. 53, 8083–8087 (2014)Google Scholar
  36. 36.
    T. Ohzuku, A. Ueda, M. Nagayama, J. Electrochem. Soc. 140, 1862–1870 (1993)Google Scholar
  37. 37.
    A.M.A. Hashem, A.E. Abdel-Ghany, A.E. Eid, J. Trottier, K. Zaghib, J. Power Sources 196, 8632–8637 (2011)Google Scholar
  38. 38.
    X. Zhang, A. Mauger, L. Qi, H. Groult, L. Perrigaud, Electrochim. Acta 55, 6440–6449 (2010)Google Scholar
  39. 39.
    S. Jouanneau, K.W. Eberman, L.J. Krause, J.R. Dahn, J. Electrochem. Soc. 150, A1637–A1642 (2003)Google Scholar
  40. 40.
    S.N. Lim, W. Ahn, S.H. Yeon, S.B. Park, Electrochim. Acta 136, 1–9 (2014)Google Scholar
  41. 41.
    F. Nobili, S. Dsoke, M. Minicucci, F. Croce, R. Marassi, J. Phys. Chem. B 110, 11310–11313 (2006)Google Scholar
  42. 42.
    X.Y. Qiu, Q.C. Zhuang, Q.Q. Zhang, R. Cao, Y.H. Qiang, P.Z. Ying, S.G. Sun, J. Electroanal. Chem. 687, 35–44 (2012)Google Scholar
  43. 43.
    W. Yao, Y. Liu, Q. Dai, D. Li, Y. Yu, Q. Jing, J. Chin. Chem. Soc. 64, 539–546 (2017)Google Scholar
  44. 44.
    C.H. Liang, L.B. Liu, Z. Jia, C. Dai, Y. Xiong, Electrochim. Acta 186, 413–419 (2015)Google Scholar
  45. 45.
    W. Yao, Q. Dai, Y. Liu, Q. Zhang, S. Zhong, Z. Yan, ChemElectroChem 4, 1236–1242 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangxi Key laboratory of Power Battery and Material, School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations