Advertisement

Study of spinel ferrites with addition of small amount of metallic elements

  • Hafiz Muhammad Tahir Farid
  • Ishtiaq Ahmad
  • Irshad Ali
  • Shahid M. Ramay
  • Asif Mahmood
Article
  • 6 Downloads

Abstract

Spinel ferrites MPr0.1Fe1.9O4 (M = Mn, Cu, Mg) were prepared by sol-gel technique. X-ray Diffraction (XRD) showed that along with spinel phase, secondary phase (PrFeO3) appeared for all composition. Scanning electron microscopy showed the inhomogeneous grain size. Temperature dependence normalized AC susceptibility and Curie temperature of spinel ferrites revealed that in all the samples transitions from multi domain (MD) to single domain (SD) occurred. Magnetic properties exhibited the soft nature of all the samples at room temperature. Temperature dependent resistivity of all the samples increased as the temperature was enhanced, representing the semiconducting behavior. Dielectric constant and complex dielectric constants were determined at the high-frequency range of 1 MHz to 3 G Hz. Impedance analysis clearly demonstrated the role of grains and grain boundary in the spinel ferrites. Cole-cole plots of all the samples showed only one semi-circle at high-frequency. All the samples elaborated the good picture of Koop’s theory and Maxwell-Wagner model. The low value of coercivity and high magnetization of Mn-based spinel ferrites made it suitable for hyperthermia applications.

Keywords

Spinel ferrites Pr-Fe-O Susceptibility Hyperthermia AC conductivity Cole-Cole plots 

References

  1. 1.
    S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Physica B 348(1-4), 317–328 (2004)CrossRefGoogle Scholar
  2. 2.
    I.H. Gul, W. Ahmed, A. Maqsood, J. Magn. Magn. Mater. 320(3-4), 270–275 (2008)CrossRefGoogle Scholar
  3. 3.
    B.S. Randhawa, H.S. Dosanjh, M. Kaur, Ceram. Int. 35(3), 1045–1049 (2009)CrossRefGoogle Scholar
  4. 4.
    J.-P. Zhou, L. Lv, X.-Z. Chen, J. Ceram Process. Res. 2(11), 263 (2010)Google Scholar
  5. 5.
    I.H. Gul, A. Maqsood, J. Alloys Compd. 465(1-2), 227–231 (2008)CrossRefGoogle Scholar
  6. 6.
    S. Basu, M. Pal, D. Chakravorty, J. Magn. Magn. Mater. 320, 3347 (2008)CrossRefGoogle Scholar
  7. 7.
    Z. Cveji, S. Raki, S. Jankov, S. Skuban, A. Kapor, J. Alloys Compd. 480(2), 241–245 (2009)CrossRefGoogle Scholar
  8. 8.
    D. Ravinder, Mater. Lett. 43(3), 129–138 (2000)CrossRefGoogle Scholar
  9. 9.
    M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.N. Ashiq, S.A. Khan, J. Electron. Mater. 46, 1826 (2017)CrossRefGoogle Scholar
  10. 10.
    M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, S.A. Khan, J. Magn. Magn. Mater. 428, 136–143 (2017)CrossRefGoogle Scholar
  11. 11.
    Z. Peng, F. Xiuli, H. Ge, F. Zhiqiang, C. Wang, L. Qi, H. Mia, J. Magn. Magn. Mater. 323(20), 2513–2518 (2011)CrossRefGoogle Scholar
  12. 12.
    M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad, M. Ishfaq, J. Ovonic Res. 11(1), 1 (2015)Google Scholar
  13. 13.
    B.X. Gu, J. Appl. Phys. 74(2), 1247–1249 (1993)CrossRefGoogle Scholar
  14. 14.
    A.M. Rais, A. Addou, M. Ameri, International Journal of Materials and Chemistry 2(2), 72–74 (2012)CrossRefGoogle Scholar
  15. 15.
    K. Vijaya Kumar, D. Ravinder, Int. J. Inorg. Mater. 3, 661 (2001)CrossRefGoogle Scholar
  16. 16.
    N. Rezlescu, E. Rezlescu, Solid State Commun. 88(2), 139–141 (1993)CrossRefGoogle Scholar
  17. 17.
    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, Mater. Chem. Phys. 113, 8606 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Ishaque, M.U. Islam, M. Azhar Khan, I.Z. Rahman, A. Genson, S. Hampshire, Physica B 405(6), 1532–1540 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Sindhu, M.R. Anantharaman, B.P. Thampi, K.A. Malini, P. Kurian, Bull. Mater. Sci. 25, 599 (2002)CrossRefGoogle Scholar
  20. 20.
    H.M. Tahir Farid, I. Ahmad, I. Ali, A. Mahmood, S.M. Ramay, Eur. Phys. J. Plus 41, 133 (2018)Google Scholar
  21. 21.
    L. Gama, A.P. Diniz, A.C.F.M. Costa, S.M. Rezende, A. Azevedo, D.R. Cornejo, Physica B 384(1-2), 97–99 (2006)CrossRefGoogle Scholar
  22. 22.
    A.M. Abdeen, O.M. Hemeda, E.E. Assem, M.M. El-Sehly, J. Magn. Magn. Mater. 238, 75 (2002)CrossRefGoogle Scholar
  23. 23.
    M.A. Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, R.K. Kotnala, J. Alloys Compd. 493, 553 (2010)CrossRefGoogle Scholar
  24. 24.
    I. Panneer Muthuselvam, R.N. Bhowmik, J. Magn. Magn. Mater. 322(7), 767–776 (2010)CrossRefGoogle Scholar
  25. 25.
    M.G. Chourashiya, J.Y. Patil, S.H. Pawar, L.D. Jadhav, Mater. Chem. Phys. 109, 39 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Munir, F. Ahmed, M. Saqib, M. Anis-ur-Rehman, J. Magn. Magn. Mater. 397, 188–197 (2016)CrossRefGoogle Scholar
  27. 27.
    M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.N. Ashiq, S.A. Khan, J. Magn. Magn. Mater. 422, 337–343 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hafiz Muhammad Tahir Farid
    • 1
  • Ishtiaq Ahmad
    • 1
  • Irshad Ali
    • 1
  • Shahid M. Ramay
    • 2
  • Asif Mahmood
    • 3
  1. 1.Department of Physics, Bahauddin ZakariyaUniversity MultanMultanPakistan
  2. 2.College of Science, Physics and Astronomy DepartmentKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations