Journal of Electroceramics

, Volume 41, Issue 1–4, pp 23–27 | Cite as

Effects of the Ga-doping concentration on the characteristics of Zn0.7Mg0.3O thin films deposited by metal-organic chemical vapor deposition using an ultrasonic nebulization

  • Choon-Ho LeeEmail author
  • Min-Seok Choi


Ga-doped Zn0.7-xMg0.3O thin films were deposited on glass substrates at 350 °C by metal-organic chemical vapor deposition using an ultrasonic nebulization technique to transport the source precursors, and the effects of the Ga-doping concentration were investigated. The films with Ga-doping concentrations less than 5 mol% grew with [001] preferred orientation perpendicular to the substrate surface and were composed of large crystallites. At Ga content greater than 5 mol%, the films grew with random orientation and very small crystallite size. The charge carrier concentration in the films increased rapidly up to 4 mol% Ga and then decreased gradually with further increases in the Ga-content. The film resistivity decreased with increasing Ga-content up to 4 mol% due mainly to the increase in charge carrier concentration. Then, the resistivity increased gradually with increasing Ga-content due to the decrease in mobility. The lowest resistivity of the Ga-doped Zn0.7-xMg0.3O thin film was 3.8 × 10−1 Ωcm at the Ga doping concentration of 4 mol%. The mean transmittance in the visible range was more than 85% in all films. The optical band gap of the films increased with increasing Ga-doping concentration up to 5 mol% due to the Burstein-Moss effect.


Ga-doped Zn0.7-xMg0.3Thin films MOCVD 


  1. 1.
    W.I. Park, G. Yi, H.M. Jang, Appl. Phys. Lett. 79(13), 2022–2024 (2001)CrossRefGoogle Scholar
  2. 2.
    K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, S. Niki, Appl. Phys. Lett. 85(8), 1374–1376 (2004)CrossRefGoogle Scholar
  3. 3.
    I.Y. Kim, S.W. Shin, M.G. Gang, S.H. Lee, K.V. Gurav, P.S. Patil, J.H. Yun, J.Y. Lee, J.H. Kim, Thin Solid Films 570, 321–325 (2014)CrossRefGoogle Scholar
  4. 4.
    G. Luka, B.S. Witkowski, L. Wachnicki, K. Goscinski, R. Jakiela, E. Guziewicz, M. Godlewski, E. Zielony, P. Bieganski, E. Placzek-Popko, W. Lisowski, J.W. Sobczak, A. Jablonski, J. Mater. Sci. 49(4), 1512–1518 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Kwon, Y. Li, Y.W. Heo, M. Jones, P.H. Holloway, D.P. Norton, Z.V. Park, S. Li, Appl. Phys. Lett. 84(14), 2685–2687 (2004)CrossRefGoogle Scholar
  6. 6.
    Y. Kamada, T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 45, L857–L859 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Chawla, K. Jayanthi, H. Chander, Phys. Status Solidi A 205(2), 271–274 (2008)CrossRefGoogle Scholar
  8. 8.
    F.Y. Meng, Y. Chiba, A. Yamada, M. Konagai, Sol. Energy Mater. Sol. Cells 91(20), 1887–1891 (2007)CrossRefGoogle Scholar
  9. 9.
    Y. Ke, J. Berry, P. Parilla, A. Zakutayev, R. O'Hayre, D. Ginley, Thin Solid Films 520(9), 3697–3702 (2012)CrossRefGoogle Scholar
  10. 10.
    D.J. Cohen, K.C. Ruthe, S.A. Barnett, J. Appl. Phys. 96(1), 459–467 (2004)CrossRefGoogle Scholar
  11. 11.
    S.W. Shin, I.Y. Kim, G.H. Lee, G.L. Agawane, A.V. Mohokar, G.S. Heo, J.H. Kim, J.Y. Lee, Cryst. Growth Des. 11(11), 4819–4824 (2011)CrossRefGoogle Scholar
  12. 12.
    K. Maejima, H. Shibata, H. Tampo, K. Matsubara, S. Niki, Thin Solid Films 518(11), 2949–2952 (2010)CrossRefGoogle Scholar
  13. 13.
    A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin, A. Kvit, R.M. Kolbas, O.W. Holland, Appl. Phys. Lett. 75(21), 3327–3329 (1999)CrossRefGoogle Scholar
  14. 14.
    L. Meng, M. Konagai, S. Miyajima, Thin Solid Films 597, 144–150 (2015)CrossRefGoogle Scholar
  15. 15.
    T. Gruber, C. Kirchner, R. Kling, F. Reuss, Appl. Phys. Lett. 84(26), 5359–5361 (2004)CrossRefGoogle Scholar
  16. 16.
    C.H. Lee, M.S. Choi, J. Nanosci. Nanotechnol. 16(11), 11353–11358 (2016)CrossRefGoogle Scholar
  17. 17.
    I.T. Kim, C.H. Lee, S.J. Park, Jpn. J. Appl. Phys. 33, 5125–5128 (1994)CrossRefGoogle Scholar
  18. 18.
    X.L. Du, Z.X. Mei, Z.L. Liu, Y. Guo, T.C. Zhang, Y.N. Hou, Z. Zhang, Q.K. Xue, A.Y. Kuznetsov, Adv. Mater. 21(45), 4625–4630 (2009)CrossRefGoogle Scholar
  19. 19.
    C. Barret, T.B. Massalski, Structure of Metal (Pergamon Press, Oxford, 1980), pp. 204–205Google Scholar
  20. 20.
    Y.S. Lee, Y.C. Peng, J.H. Lu, Y.R. Zhu, H.C. Wu, Thin Solid Films 570, 464–470 (2014)CrossRefGoogle Scholar
  21. 21.
    E. Burstein, Phys. Rev. 93(3), 632–633 (1954)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials EngineeringKeimyung UniversityDaeguSouth Korea

Personalised recommendations