Journal of Electroceramics

, Volume 41, Issue 1–4, pp 1–8 | Cite as

Sintering and optical properties of transparent ZnS ceramics by pre-heating treatment temperature

  • Seo-Yeong Yeo
  • Tae-Hyeong Kwon
  • Chang-Sun Park
  • Chang-Il Kim
  • Ji-Sun Yun
  • Young-Hun Jeong
  • Youn-Woo Hong
  • Jeong-Ho Cho
  • Jong-Hoo Paik


The main objective of our work is to increase transmittance in the mid infrared region by removing impurities through the pre-heating treatment of zinc sulfide (ZnS) produced by hydrothermal synthesis. The pre-heating treatment proceeded at 450 to 600 °C for 2 h under vacuum atmosphere (10−2 Torr). It was confirmed that the particle size increased as the pre-heating temperature increased. Additionally, all ZnS nano powders had a sphalerite (cubic) structure unaffected by pre-heating treatment. The ZnS nano powders were sintered by hot-press sintering method. As the pre-heating temperature increased, transmittance was improved due to the decreasing of porosity, increase of particle size, and the removal of impurities (carbon and sulfate). However, when the pre-heating treatment temperature was 600 °C, the transmittance slightly decreased due to the formation of a hexagonal phase. The ZnS ceramic with pre-heating treatment at 550 °C showed the highest transmittance (71.6%) and density (99.9%).


ZnS Hydrothermal synthesis Hot press Sintering Infrared 



This work was supported by the Materials and Components Technology Development Program of MOTIE/KEIT [No. 10067243, The development of TeO2 based optical glass and sintered ZnS for mid infrared applications in smart devices].


  1. 1.
    M. Bredol, J. Merikhi, J. Mater. Sci. 33(2), 471–476 (1998)CrossRefGoogle Scholar
  2. 2.
    Y. Li, Y. Wu, J. Am. Ceram. Soc. 98(10), 2972–2975 (2015)CrossRefGoogle Scholar
  3. 3.
    J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Angew. Chem. Int. Ed. 117(8), 1295–1299 (2005)CrossRefGoogle Scholar
  4. 4.
    I. Masafumi, S. Masahiko, in Window and Dome Technologies and Materials XV, ed. by B.J. Zelinski (SPIE, Bellingham, 2017), p. 101790L–1Google Scholar
  5. 5.
    A. Rogalski, K. Chrzanowski, Opto-electron. Rev. 10, 111 (2002)Google Scholar
  6. 6.
    C.B. Willingham, J.M. Wahl, P.K. Hogan, L.C. Kupferberg, T.Y. Wong, A.M. De, Proc. of. SPIE 5078, 179 (2003)Google Scholar
  7. 7.
    O. Merdrignac-Conance, N. Hakmeh, G. Durand, X.-H. Zhang, Proc. of SPIE 9822, 1 (2016)Google Scholar
  8. 8.
    C. Chlique, G. Delaizir, O. Merdrignac-Conance, C. Roucau, M. Dolle, P. Rozier, V. Bouquet, X.H. Zhang, Opt. Mater. 33(5), 706–712 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Chen, L. Zhang, J. Zhang, P. Liu, T. Zhou, H. Zhang, D. Gong, D. Tang, D. Shen, Opt. Mater. 50, 36–39 (2015)CrossRefGoogle Scholar
  10. 10.
    T.T.Q. Hoa, L.V. Vu, T.D. Canh, N.N. Long, J. Phys. Conf. Ser. 187, 012081 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.-D. Kim, K. Sonezaki, H. Maeda, A. Kato, J. Mater. Sci. 33, 5101 (1997)CrossRefGoogle Scholar
  12. 12.
    N. Uzar, M.C. Arican, Bull. Mater. Sci. 34(2), 287–292 (2011)CrossRefGoogle Scholar
  13. 13.
    Z. Shizen, M.A. Hongli, R. Jean, M.-C. Odile, A. Jean-Luc, L. Jacques, Z. Xianghua, J. Optoelectron. Adv. M. 1, 667 (2007)Google Scholar
  14. 14.
    Y. Li, L. Zhang, K. Kisslinger, Y. Wu, Opt. Mater. Express 4, 1140 (2014)Google Scholar
  15. 15.
    X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, Prog. Mater. Sci. 56(2), 175–287 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Denzier, M. Olschewski, K. Sattler, J. Appl. Phys. 84(5), 2841–2845 (1998)CrossRefGoogle Scholar
  17. 17.
    I.N. Bhattacharya, P.K. Gochhayat, P.S. Mukherjee, S. Paul, P.K. Mitra, Mater. Chem. Phys. 88(1), 32–40 (2004)CrossRefGoogle Scholar
  18. 18.
    P. Aubry, A. Bensalah, P. Gredin, G. Patriarche, D. Vivien, M. Mortier, Opt. Mater. 31(5), 750–753 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Kajbafvala, S. Zanganeh, E. Kajbafvala, H.R. Zargar, M.R. Bayati, S.K. Sadrnezhaad, J. Alloys Compd. 497(1-2), 325–329 (2010)CrossRefGoogle Scholar
  20. 20.
    R. Kugel, H. Taube, J. Phys. Chem. 79(20), 2130–2135 (1975)CrossRefGoogle Scholar
  21. 21.
    S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Solid State Sci. 14(3), 299–304 (2012)CrossRefGoogle Scholar
  22. 22.
    C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. Zhang, J. L. Adam, J. Am. Ceram. Soc. 96, 3070 (2013)Google Scholar
  23. 23.
    M. Nassar, Energy Sources 25(8), 837–844 (2003)CrossRefGoogle Scholar
  24. 24.
    M.N. Rahaman, Ceramic Processing and Sintering, 2nd Edn (Taylor and Francis, Boca Raton, 2003)Google Scholar
  25. 25.
    B. Mokili, M. Froment, D. Lincot, J. Phys. lV. 15, 261 (1995)Google Scholar
  26. 26.
    T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, S. Nakayama, SEI Theh. Rev. 69, 48 (2009)Google Scholar
  27. 27.
    C. S. Park, S. Y. Yeo, T. H. Kwon, W. I. Park, J. S. Yun, Y. H. Jeong, Y. W. Hong, J. H. Cho, J. H. Paik, J. Korean Inst. Electr. Electron. Mater. Eng. 30, 722 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Seo-Yeong Yeo
    • 1
  • Tae-Hyeong Kwon
    • 1
  • Chang-Sun Park
    • 1
  • Chang-Il Kim
    • 1
  • Ji-Sun Yun
    • 1
  • Young-Hun Jeong
    • 1
  • Youn-Woo Hong
    • 1
  • Jeong-Ho Cho
    • 1
  • Jong-Hoo Paik
    • 1
  1. 1.Electronic Convergence Materials DivisionKorea Institute of Ceramic Engineering & TechnologyJinjuSouth Korea

Personalised recommendations