Advertisement

Journal of Electroceramics

, Volume 40, Issue 4, pp 300–305 | Cite as

Nanocomposites of transition metals tungstate for potential applications in magnetic and microwave devices

Article
  • 81 Downloads

Abstract

Ni2-xCox(WO4)2 and Ni2-xMnx(WO4)2 (x = 0.0, 0.50, 1.0, 1.50 and 2.0) nanocomposites have been synthesized by facile hydrothermal method. The synthesized samples have been characterized by powder XRD and Scanning Electron Microscopy to analyze the structure and morphology. Structural analysis has revealed the single phase formation with wolframite monoclinic system for NiWO4 samples. The calculated crystallite size ranges from 6 to 40 nm for the nanocomposites. Magnetic and dielectric parameters have also been studied. Magnetic susceptibility measurements of each sample have been carried out at room temperature (312 K) by using Sherwood magnetometer. A decrease in susceptibility values has been observed by increase in the concentration of manganese or cobalt in nickel tungstate leading to antiferromagnetic behavior. Dielectric measurements in the frequency range of 6 kHz to 1 MHz have been calculated. The analysis showed that dielectric parameters decrease with increase in frequency.

Keywords

Hydrothermal Wolframite Magnetic susceptibility Dielectric properties 

References

  1. 1.
    T. Rabizadeh, S.R. Allahkaram, A. Zarebidaki, Mater. Des. 31, 3174 (2010)CrossRefGoogle Scholar
  2. 2.
    C.A. Kumar, D. Pamu, J. Electron. Mater. 46, 917 (2017)CrossRefGoogle Scholar
  3. 3.
    X. Lu, Y. Zheng, Q. Huang, W. Xiong, J. Electron. Mater. 44, 4243 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Kaveh, C. Ken, RSC Adv. 6, 16301 (2016)CrossRefGoogle Scholar
  5. 5.
    G. Tegard, Nanotechnology: the technology for twenty-first century. Forsight 6, 364 (2004)CrossRefGoogle Scholar
  6. 6.
    J.H. Ryu, J. Yoon, C.S. Lim, W. C. Oh and K. B. Shim. Ceram. Int. 31, 883 (2005)CrossRefGoogle Scholar
  7. 7.
    R.C. Pullar, S. Farrah, N.M. Alford, J. Eur. Ceram. Soc. 27, 1059 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Saranya, S.T. Senthilkumar, K.V. Sankar, et al., J. Electroceram. 28, 220 (2012)CrossRefGoogle Scholar
  9. 9.
    R. Sundaram, K.S. Nagaraja, Mater. Res. Bull. 39, 581 (2004)CrossRefGoogle Scholar
  10. 10.
    D.L. Stern, R.K. Grasselli, J. Catal. 167, 570 (1997)CrossRefGoogle Scholar
  11. 11.
    L.F. Johnson, G.D. Boyd, K. Nassau, R.R. Soden, Phys. Rev. 126, 1406 (1962)CrossRefGoogle Scholar
  12. 12.
    T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Chem. Phys. Lett. 498, 113 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Yu, C.Y. Jimmy, Mater. Sci. Eng. B 164, 16 (2009)CrossRefGoogle Scholar
  14. 14.
    H.Y. He, J.F. Huang, L.Y. Cao, J. P. Wu. Desalination 252, 66 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Dodd, A. McKinley, A. Tsuzuki, M. Saunders, J. Eur. Ceram. Soc. 29, 139 (2009)CrossRefGoogle Scholar
  16. 16.
    G. Huang, Y. Zhu, Mater. Sci. Eng. B 139, 201 (2007)CrossRefGoogle Scholar
  17. 17.
    J.M. Quintana-Melgoza, J. Cruz-Reyes, M. Avalos-Borja, Mater. Lett. 47, 314 (2001)CrossRefGoogle Scholar
  18. 18.
    D. Chen, G. Shen, K. Tang, H. Zheng, Y. Qian, Mater. Res. Bull. 38, 1783 (2003)CrossRefGoogle Scholar
  19. 19.
    Z. Song, J. Ma, H. Sun, W. Wang, Y. Sun, L. Sun, Z. Liu, C. Gao, Ceram. Int. 35, 2675 (2009)CrossRefGoogle Scholar
  20. 20.
    A.L.M. De Oliveira, J.M. Ferreira, M.R. Silva, S.C. de Souza, F.T.G. Vieira, E. Longo, A.G. Souza, I.M. Santos, J. Therm. Anal. Calorim. 97, 167 (2009)CrossRefGoogle Scholar
  21. 21.
    J.H. Ryu, J.W. Yoon, C.S. Lim, K.B. Shim, Key Eng. Mater. 317, 223 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Dias, V.S. Ciminelli, J. Eur. Ceram. Soc. 21, 2061 (2001)CrossRefGoogle Scholar
  23. 23.
    C.P. Symth, Acta Cryst 9, 838–839 (1956)CrossRefGoogle Scholar
  24. 24.
    A. Chelkowski, Dielectric Physic (Elsevier, Amsterdam, 1980), pp. 1–390Google Scholar
  25. 25.
    V.V. Daniel, Dielectric relaxation (Academic Press, London, 1967), pp. 1–281Google Scholar
  26. 26.
    R. Hisam, A.K. Yahya, H.M. Kamari, Z.A. Talib, R.H.Y. Subban, Mater. Express 6, 149–160 (2016)CrossRefGoogle Scholar
  27. 27.
    Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Y.L. Chai, J. Alloys Compd. 421(1–2), 240–246 (2006)CrossRefGoogle Scholar
  28. 28.
    Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Y.L. Chai, J. Alloys Compd. 421, 240 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Bashir, A. Mahmood, M.N. Ashiq, M.A. Malana, M. Najam-Ul-Haq, J. Alloys Compd. 590, 193 (2014)CrossRefGoogle Scholar
  30. 30.
    C.G. Koops, Phys. Rev. 83(1), 121–124 (1951)CrossRefGoogle Scholar
  31. 31.
    A. Kaveh, F.S. Omor, B.M. Patrick, M. Evgeny, S. Susanne Appl, Phys. Lett. 110, 062104 (2017)Google Scholar
  32. 32.
    A. Kaveh, S. Susanne, Phys. Rev. Lett. 118, 236803 (2017)CrossRefGoogle Scholar
  33. 33.
    J.Y. Kim, H.S. Jung, J.H. No, J.R. Kim, K.S. Hong, J. Electroceram. 16, 447 (2006)CrossRefGoogle Scholar
  34. 34.
    F. Jin, H. Tong, L. Shen, K. Wang, P.K. Chu, Mater. Chem. Phys. 100, 31 (2006)CrossRefGoogle Scholar
  35. 35.
    R. Gupta, S.C.K. Misra, B.D. Malhotra, N.N. Beladakere, S. Chandra, Appl. Phys. Lett. 58, 51 (1991)CrossRefGoogle Scholar
  36. 36.
    R.J. Cava, J. Mater. Chem. 11, 54 (2001)CrossRefGoogle Scholar
  37. 37.
    Z.K. Heiba, M.B. Mohamed, H. Fuess, Mater. Res. Bull. 47, 4278 (2012)CrossRefGoogle Scholar
  38. 38.
    S. Zhuang, X. Xu, Y. Pang, H. Li, B. Yu, J. Hu, J. Magn. Magn. Mater. 327, 24 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Chemical SciencesBahauddin Zakariya UniversityMultanPakistan
  2. 2.Department of ChemistryUniversity of Education LahoreVehariPakistan

Personalised recommendations