Journal of Electroceramics

, Volume 40, Issue 3, pp 257–269 | Cite as

Structural, dielectric and magnetic properties of particulate composites of relaxor (BaTi0.85Sn0.15O3) and ferrite (NiFe2O4) synthesized by gel-combustion method

  • Md. Jawed Ansaree
  • Upendra Kumar
  • Shail UpadhyayEmail author


Particulate composites of (1-x) BaTi0.85Sn0.15O3 – x NiFe2O4 (with x = 5, 10,15 and 20 wt%) were synthesized using the solid-state reaction method by sintering at 1350 °C for 4 h. Formation of the diphase composites was confirmed by X-ray diffraction (XRD) and Fourier Transform Infra-red (FTIR) techniques. Temperature (RT-200 °C) and frequency (20 Hz- 1 MHz) dependent of AC conductivity, dielectric constant and dissipation have been studied. The dielectric constant exhibits strong frequency dispersion in the range 20 Hz-1 kHz which is attributed to Maxwell-Wagner interfacial polarization occurring at grain-grain-boundaries interface/interface of grains of BTS-NF. The M-H curve of all the composites exhibited a hysteresis loops typical charcateistic of a ferromagnetic material. The ferromagnetic ordering in the composites on account of NiFe2O4 as a constituent is explained using bound magnetic polarons (BMPs) model. The experimental magnetic data have been fitted to BMP model. Value of Ms is smaller, whereas of Hc and Mr are higher of the composites compared to value for NiFe2O4. The temperature at which divergence in the M vs. T plot in ZFC and FC starts is higher for the composites than for NiFe2O4.


BTS-NF composite FTIR Dielectric constant M-H loop 



The authors are grateful to the Head, Department of Physics, Head, Department of Pharmaceutics Head, and Coordinator, Central Instrument Facility Center (CIFC), IIT(BHU), Varanasi for providing the experimental facilities required for the characterization of the synthesized samples. Mr. Md. Jawed Ansaree and Mr. Upendra Kumar are thankful to the Ministry of Human Resource and Development (MHRD), Government of India for the financial support in terms of Senior Research Fellowship (SRF).


  1. 1.
    J. Wang, Z. Li, H. He, C. Nan, Effect of thickness on the stress and magnetoelectric coupling in bilayered Pb(Zr0.52Ti0.48)O3-CoFe2O4 films. J. Appl. Phys. 117, 044101 (2015). CrossRefGoogle Scholar
  2. 2.
    M. Gich, I. Fina, A. Morelli, F. Sánchez, M. Alexe, J. Gàzquez, et al., Multiferroic iron oxide thin films at room temperature. Adv. Mater. 26, 4645–4652 (2014). CrossRefGoogle Scholar
  3. 3.
    M. Lorenz, G. Wagner, V. Lazenka, P. Schwinkendorf, H. Modarresi, M.J. Van Bael, et al., Correlation of magnetoelectric coupling in multiferroic BaTiO3-BiFeO3 superlattices with oxygen vacancies and antiphase octahedral rotations. Appl. Phys. Lett. 106, 012905 (2015). CrossRefGoogle Scholar
  4. 4.
    H. Luo, H. Yang, S.A. Baily, O. Ugurlu, M. Jain, M.E. Hawley, et al., Self-assembled epitaxial nanocomposite BaTiO3 −NiFe2O4 films prepared by polymer-assisted deposition. J. Am. Chem. Soc. 129, 14132–14133 (2007). CrossRefGoogle Scholar
  5. 5.
    M. Lorenz, V. Lazenka, P. Schwinkendorf, F. Bern, M. Ziese, H. Modarresi, et al., Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: Strain engineering and magnetoelectric coupling. J. Phys. D. Appl. Phys. 47, 135303 (2014). CrossRefGoogle Scholar
  6. 6.
    B. Sarkar, B. Dalal, V. Dev Ashok, K. Chakrabarti, A. Mitra, S.K. De, Magnetic properties of mixed spinel BaTiO3-NiFe2O4 composites. J. Appl. Phys. 115, 123908 (2014). CrossRefGoogle Scholar
  7. 7.
    L. Curecheriu, P. Postolache, V. Buscaglia, N. Horchidan, M. Alexe, L. Mitoseriu, BaTiO3–ferrite composites with magnetocapacitance and hard/soft magnetic properties. Phase Transit. 86, 670–680 (2013). CrossRefGoogle Scholar
  8. 8.
    P. Galizia, C.E. Ciomaga, L. Mitoseriu, C. Galassi, PZT-cobalt ferrite particulate composites: Densification and lead loss controlled by quite-fast sintering. J. Eur. Ceram. Soc. 37, 161–168 (2017). CrossRefGoogle Scholar
  9. 9.
    R. Grigalaitis, M.M. Vijatović Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, et al., Dielectric and magnetic properties of BaTiO3 –NiFe2O4 multiferroic composites. Ceram. Int. 40, 6165–6170 (2014). CrossRefGoogle Scholar
  10. 10.
    K.C. Verma, R.K. Kotnala, Nanostructural and lattice contributions to multiferroic in NiFe2O4/BaTiO3. Mater. Chem. Phys. 174, 120–128 (2016). CrossRefGoogle Scholar
  11. 11.
    C. Deng, Y. Zhang, J. Ma, Y. Lin, C.-W. Nan, Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3–NiFe2O4 composite thin films. Acta Mater. 56, 405–412 (2008). CrossRefGoogle Scholar
  12. 12.
    A.S. Dzunuzovic, M.M.V. Petrovic, B.S. Stojadinovic, N.I. Ilic, J.D. Bobic, C.R. Foschini, et al., Multiferroic (NiZn) Fe2O4–BaTiO3 composites prepared from nanopowders by the auto-combustion method. Ceram. Int. 41 (, 13189–13200 (2015). CrossRefGoogle Scholar
  13. 13.
    J. Nie, X. Guoyue, Y. Yang, C. Cheng, Strong magnetoelectric coupling in CoFe2O4–BaTiO3 composites prepared by molten-salt synthesis method. Mater. Chem. Phys. 115, 400–403 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Lather, A. Gupta, J. Dalal, V. Verma, R. Tripathi, A. Ohlan, Effect of mechanical milling on structural, dielectric and magnetic properties of BaTiO3–Ni0.5Co0.5Fe2O4 multiferroic nanocomposites. Ceram. Int. 43, 3246–3251 (2017). CrossRefGoogle Scholar
  15. 15.
    R. Sharma, P. Pahuja, R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40 (, 9027–9036 (2014). CrossRefGoogle Scholar
  16. 16.
    L. Zhou, Q. Fu, D. Zhou, F. Xue, Y. Tian, L. Hao, Magnetoelectric coupling study in multiferroic La0.7Ba0.3MnO3–BaTiO3 composite ceramic at room temperature. Ceram. Int. 41, 2367–2372 (2015). CrossRefGoogle Scholar
  17. 17.
    K. Bala, R.K. Kotnala, N.S. Negi, Magnetically tunable dielectric, impedance and magnetoelectric response in MnFe2O4/(Pb1−xSrx)TiO3 composites thin films. J. Magn. Magn. Mater. 424, 256–266 (2017). CrossRefGoogle Scholar
  18. 18.
    R.J. Pandya, U.S. Joshi, O.F. Caltun, Microstructural and electrical properties of barium strontium Titanate and nickel zinc ferrite composites. Procedia Mater. Sci. 10, 168–175 (2015). CrossRefGoogle Scholar
  19. 19.
    S. Abdul Khader, T. Sankarappa, Corrigendum to “dielectric, magnetic and ferroelectric studies in (x)Mn0.5Zn0.5Fe2O4+(1−x)BaTiO3 magnetoelectric nano-composites” [mater. Today: Proc. 3 (2016) 2358–2365]. Materials Today: Proceedings. 3, 2547 (2016). CrossRefGoogle Scholar
  20. 20.
    P. Guzdek, M. Sikora, Ł. Góra, C. Kapusta, Magnetic and magnetoelectric properties of nickel ferrite–lead iron niobate relaxor composites. J. Eur. Ceram. Soc. 32, 2007–2011 (2012). CrossRefGoogle Scholar
  21. 21.
    T. Woldu, B. Raneesh, B.K. Hazra, S. Srinath, P. Saravanan, M.V.R. Reddy, et al., A comparative study on structural, dielectric and multiferroic properties of caFe2O4/BaTiO3 core-shell and mixed composites. J. Alloys Compd. 691, 644–652 (2017). CrossRefGoogle Scholar
  22. 22.
    F. Ansari, M. Bazarganipour, M. Salavati-Niasari, NiTiO3/NiFe2O4 nanocomposites: Simple sol–gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent. Mater. Sci. Semicond. Process. 43, 34–40 (2016). CrossRefGoogle Scholar
  23. 23.
    R. Rani, J.K. Juneja, S. Singh, K.K. Raina, C. Prakash, Multiferroic properties of 0.05 NZF - 0.95 Ba0.9-3x/2Sr0.1LaxTiO3 Magnetoelectric composites. Adv. Mater. Lett. 5, 229–233 (2014). CrossRefGoogle Scholar
  24. 24.
    P. Dipti, J.K. Kumar, C. Juneja, Prakash, Multiferroic properties of composites of PLZT and substituted CoFe2O4. J. Ceram. Process. Res. 16(4), 432–437 (2015)Google Scholar
  25. 25.
    S. Lopatin, I. Lopatina, I. Lisnevskaya, Magnetoelectric PZT/ferrite composite material. Ferroelectrics 162, 63–68 (1994). CrossRefGoogle Scholar
  26. 26.
    S.N. Babu, J.-H. Hsu, Y.S. Chen, J.G. Lin, Dielectric, magnetic and magnetoelectric properties of multiferroic BiFe0.5Cr0.5O3–NiFe2O4 composites. J. Appl. Phys. 107, 09D919 (2010). CrossRefGoogle Scholar
  27. 27.
    S. Narendra Babu, S.V. Suryanarayana, T. Bhimasankaram, Magnetic and magnetoelectric characterization of Ni0.93Co0.02Mn0.05Fe1.95O4 and PZT composites. J. Alloys Compd. 473, 418–422 (2009). CrossRefGoogle Scholar
  28. 28.
    M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.-M. Liu, X.P. Jiang, et al., Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J. Appl. Phys. 95, 8069–8073 (2004). CrossRefGoogle Scholar
  29. 29.
    R.A. Islam, J. Jiang, F. Bai, D. Viehland, S. Priya, Correlation between structural deformation and magnetoelectric response in (1−x) Pb(Zr0.52Ti0.48)O3–xNiFe1.9Mn0.1O4 particulate composites. Appl. Phys. Lett. 91, 162905 (2007). CrossRefGoogle Scholar
  30. 30.
    A. Gupta, A. Huang, S. Shannigrahi, R. Chatterjee, Improved magnetoelectric coupling in Mn and Zn-doped CoFe2O4–PbZr0.52Ti0.48O3 particulate composite. Appl. Phys. Lett. 98, 112901 (2011). CrossRefGoogle Scholar
  31. 31.
    Z. Kighelman, D. Damjanovic, N. Setter, Dielectric and electromechanical properties of ferroelectric-relaxor 0.9 Pb(mg1/3Nb2/3)O30.1PbTiO3 thin films. J. Appl. Phys. 90, 4682–4689 (2001). CrossRefGoogle Scholar
  32. 32.
    T. Takenaka, H. Nagata, Y. Hiruma, Y. Yoshii, K. Matsumoto, Lead-free piezoelectric ceramics based on perovskite structures. J. Electroceram. 19, 259–265 (2007). CrossRefGoogle Scholar
  33. 33.
    V.V. Shvartsman, J. Dec, Z.K. Xu, J. Banys, P. Keburis, W. Kleemann, Crossover from ferroelectric to relaxor behavior in BaTi1−xSnxO3solid solutions. Phase Transit. 81, 1013–1021 (2008). CrossRefGoogle Scholar
  34. 34.
    X. Wei, X. Yao, Preparation, structure and dielectric property of barium stannate titanate ceramics. Mater. Sci. Eng. B 137, 184–188 (2007). CrossRefGoogle Scholar
  35. 35.
    S. Marković, M. Mitrić, N. Cvjetićanin, D. Uskoković, Preparation and properties of BaTi1−xSnxO3 multilayered ceramics. J. Eur. Ceram. Soc. 27, 505–509 (2007). CrossRefGoogle Scholar
  36. 36.
    V.V. Shvartsman, W. Kleemann, J. Dec, Z.K. Xu, S.G. Lu, A diffuse phase transition in BaTi1−xSnxO3 ceramics: An intermediate state between ferroelectric and relaxor behavior. J. Appl. Phys. 99 (2006) 124111.
  37. 37.
    T. Wang, X.M. Chen, X.H. Zheng, Dielectric characteristics and Tunability of barium Stannate titanate ceramics. J. Electroceram. 11, 173–178 (2003). CrossRefGoogle Scholar
  38. 38.
    J. Jacob, M.A. Khadar, Investigation of mixed spinel structure of nanostructured nickel ferrite. J. Appl. Phys. 107, 114310 (2010). CrossRefGoogle Scholar
  39. 39.
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, et al., Mixed spinel structure in nanocrystallineNiFe2O4. Phys. Rev. B 63 (2001).
  40. 40.
    T. Abraham, Nanosized powders of NiZn ferrite: Synthesis, structure, and magnetism. Am. Ceram. Bull. Soc. Bull. 73, 62–65 (1994)Google Scholar
  41. 41.
    S.A. Seyyed Ebrahimi, J. Azadmanjiri, Evaluation of NiFe2O4 ferrite nanocrystalline powder synthesized by a sol–gel auto-combustion method. J. Non-Cryst. Solids 353, 802–804 (2007). CrossRefGoogle Scholar
  42. 42.
    V. Šepelák, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F.J. Litterst, et al., Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J. Magn. Magn. Mater. 257, 377–386 (2003). CrossRefGoogle Scholar
  43. 43.
    H. Moradmard, S. Farjami Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116–122 (2015). CrossRefGoogle Scholar
  44. 44.
    A. Ries, A.Z. Simões, M. Cilense, M.A. Zaghete, J.A. Varela, Barium strontium titanate powder obtained by polymeric precursor method. Mater. Charact. 50, 217–221 (2003). CrossRefGoogle Scholar
  45. 45.
    R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955). CrossRefGoogle Scholar
  46. 46.
    C. Elena Ciomaga, A. Maria Neagu, M. Valentin Pop, M. Airimioaei, S. Tascu, G. Schileo, et al., Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites. J. Appl. Phys. 113, 074103 (2013). CrossRefGoogle Scholar
  47. 47.
    C.G. Koop, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys.Rev.B. 83, 121–130 (1951)CrossRefGoogle Scholar
  48. 48.
    J.C. Maxwell, Electricity, and Magnetism (Oxford University Press, London, 1993)Google Scholar
  49. 49.
    A.D. Sheikh, V.L. Mathe, Composition dependent phase connectivity, dielectric and magnetoelectric properties of magnetoelectric composites with Pb(Mg1/3Nb2/3)0.67Ti0.33O3 as piezoelectric phase. Mater. Res. Bull. 44, 2194–2200 (2009). CrossRefGoogle Scholar
  50. 50.
    K.Y. Lee, H.K. CHO, J.H. Ahn, Phase transformations in mechanically alloyed al3Ti. J. Mater. Sci. Lett. 15 (1996).
  51. 51.
    S. Upadhyay, D. Kumar, O. Prakash, Effect of composition on dielectric and electrical properties of the Sr1-xLaxTi1-xCoxO3 system. Bull. Mater. Sci. 19, 513–525 (1996)CrossRefGoogle Scholar
  52. 52.
    S.K. Upadhyay, V.R. Reddy, N. Lakshmi, Study of (1−x) BaTiO3–x Ni0.5Zn0.5Fe2O4 (x=5, 10 and 15%) magneto-electric ceramic composites. J. Asian Ceramic Soc. 1, 346–350 (2013). CrossRefGoogle Scholar
  53. 53.
    J. Shen, Y. Bai, J. Zhou, L. Li, Magnetic properties of a novel ceramic ferroelectric-ferromagnetic composite. J. Am. Ceram. Soc. 88, 3440–3443 (2005). CrossRefGoogle Scholar
  54. 54.
    A.C. Durst, R.N. Bhatt, P.A. Wolff, Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors. Phys. Rev. B 65 (2002).
  55. 55.
    A. Goldman, Low-temperature physics low-temperature physics: Christian Enss and Siegfried Hunklinger, springer, New York, 2005. $79.95 (573 pp.). ISBN 3-540-23164-1. Phys. Today 59, 50–51 (2006). CrossRefGoogle Scholar
  56. 56.
    T. Shanmugavel, S. Gokul Raj, G. Ramesh Kumar, G. Rajarajan, D. Saravanan, Cost effective preparation and characterization of nanocrystalline nickel ferrites (NiFe2O4) in the low-temperature regime. Journal of King Saud University - Science. 27, 176–181 (2015). CrossRefGoogle Scholar
  57. 57.
    R. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Md. Jawed Ansaree
    • 1
  • Upendra Kumar
    • 1
  • Shail Upadhyay
    • 1
    Email author
  1. 1.Department of Physics, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations