Advertisement

Journal of Electroceramics

, Volume 40, Issue 3, pp 247–256 | Cite as

Improved magnetic properties of bismuth ferrite ceramics by La and Gd co-substitution

  • Mehmet S. Bozgeyik
  • Rajesh K. Katiyar
  • Ram S. Katiyar
Article
  • 103 Downloads

Abstract

Increased magnetic properties of La and Gd substituted bismuth ferrite (Bi0.9La0.1Fe1-xGdxO3) (BLFGO) ceramics are reported. Considering perovskite structure of bismuth ferrite (BiFeO3), Bi and Fe sites were partially substituted by La and Gd, respectively. These materials were synthesized by conventional solid state reaction method. Crystal structure and phase purity were confirmed by X-ray diffraction and Raman scattering spectroscopy at room temperature. A considerable improved ferromagnetic properties with double remnant magnetization of 0.184 emu/g was observed by increasing Gd ratio up to 5%. With different ionic sizes and due to magnetic moment of Gd, an induced deformation of spin cycloid structure had thereby resulted in net magnetization. Also, we monitor some decrease in dielectric loss upon La and Gd substitutions. Additionally, these ceramics showed significant magnetoelectric coupling. Such improvements on magnetic, insulation, and magnetoelectric properties demonstrated the potential of BLFGO for possible multiferroic device applications.

Keywords

La-Gd co-substituted bismuth ferrite Multiferroic ceramics BiFeO3 Magnetic properties Solid-state reaction 

Notes

Acknowledgments

Mehmet S. Bozgeyik acknowledges the Scientific and Technological Research Council of Turkey (TUBITAK) for postdoctoral scholarship (2219). We are very much thankful to Prof. R. Palai of University of Puerto Rico for providing magneto-dielectric measurement facilities. Financial support by the DOE- Grant#DE-FG02-08ER46526 at UPR was utilized to carry out the work.

References

  1. 1.
    M. Bibes, A. Barthelemy, Multiferroics: Towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008)CrossRefGoogle Scholar
  2. 2.
    I. Busch-Vishniac, Trends in electromechanical transduction. J. Acoust. Soc. Am. 103(5), 2860–2860 (1998)CrossRefGoogle Scholar
  3. 3.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)CrossRefGoogle Scholar
  4. 4.
    N. Fujimura et al., Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices. Appl. Phys. Lett. 69(7), 1011–1013 (1996)CrossRefGoogle Scholar
  5. 5.
    R. Ramesh, N.A. Spaldin, Multiferroics: Progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007)CrossRefGoogle Scholar
  6. 6.
    V.E. Wood et al., Magnetoelectric Interaction Phenomena in Crystals (Gordon and Breach, London, 1975)Google Scholar
  7. 7.
    H. Zheng et al., Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 6(7), 1401–1407 (2006)CrossRefGoogle Scholar
  8. 8.
    Y. Li et al., Multiferroic properties of sputtered BiFeO3 thin films. Appl. Phys. Lett. 92(13), 132908–132908 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Wang et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003)CrossRefGoogle Scholar
  10. 10.
    F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr. Sect. B: Struct. Sci. 46(6), 698–702 (1990)CrossRefGoogle Scholar
  11. 11.
    E. Palaimiene et al., Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic. Appl. Phys. Lett. 106(1) (2015)Google Scholar
  12. 12.
    B. Ruette et al., Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order. Phys. Rev. B 69(6) (2004)Google Scholar
  13. 13.
    T.D. Rao, S. Asthana, Evidence of improved ferroelectric phase stabilization in Nd and Sc co-substituted BiFeO3. J. Appl. Phys. 116(16), 164102 (2014)CrossRefGoogle Scholar
  14. 14.
    D.H. Kuang et al., Thickness dependent ferroelectric and magnetic properties of Bi0.9Gd0.1Fe0.9Co0.1O3 films prepared by RF magnetron sputtering. J. Magn. Magn. Mater. 397, 33–38 (2016)CrossRefGoogle Scholar
  15. 15.
    A.K. Tagantsev et al., Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90(3), 1387–1402 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Kumar, K.L. Yadav, Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. J. Appl. Phys. 100(7), 074111 (2006)CrossRefGoogle Scholar
  17. 17.
    X.D. Qi et al., Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86(6), 062903 (2005)CrossRefGoogle Scholar
  18. 18.
    C. Tabares-Mun̄oz et al., Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn. J. Appl. Phys. 24(S2), 1051 (1985)CrossRefGoogle Scholar
  19. 19.
    R. Przenioslo, M. Regulski, I. Sosnowska, Modulation in multiferroic BiFeO3: Cycloidal, elliptical or SDW? J. Phys. Soc. Jpn. 75(8), 084718 (2006)CrossRefGoogle Scholar
  20. 20.
    I. Sosnowska, T. Peterlinneumaier, E. Steichele, Spiral magnetic-ordering in bismuth ferrite. J. Phys. C-Solid State Physics 15(23), 4835–4846 (1982)CrossRefGoogle Scholar
  21. 21.
    K.S. Nalwa, A. Garg, Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 103(4), 044101 (2008)CrossRefGoogle Scholar
  22. 22.
    K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: The coupling between magnetic and polarization orders. Adv. Phys. 58(4), 321–448 (2009)CrossRefGoogle Scholar
  23. 23.
    P. Yang et al., Effect of BaTiO3 buffer layer on multiferroic properties of BiFeO3 thin films. J. Appl. Phys. 105(6), 061618 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71(6), 060401 (2005)CrossRefGoogle Scholar
  25. 25.
    K. Praveena et al., Structural, multiferroic properties and enhanced magnetoelectric coupling in Sm1-xCaxFeO3. Ceram. Int. 42(12), 13572–13585 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Madolappa et al., Improved electrical characteristics of Pr-doped BiFeO3 ceramics prepared by sol-gel route. Mater. Res. Express 3(6), 065009 (2016)CrossRefGoogle Scholar
  27. 27.
    V.A. Khomchenko et al., Doping strategies for increased performance in BiFeO3. J. Magn. Magn. Mater. 321(11), 1692–1698 (2009)CrossRefGoogle Scholar
  28. 28.
    T.J. Park et al., Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures. Phys. Rev. B 82(2), 024431 (2010)CrossRefGoogle Scholar
  29. 29.
    H. Ishiwara, Impurity substitution effects in BiFeO3 thin films-from a viewpoint of FeRAM applications. Curr. Appl. Phys. 12(3), 603–611 (2012)CrossRefGoogle Scholar
  30. 30.
    Y.K. Jun et al., Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics. Solid State Commun. 135(1–2), 133–137 (2005)CrossRefGoogle Scholar
  31. 31.
    V.R. Palkar et al., Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system. Phys. Rev. B 69(21), 212102 (2004)CrossRefGoogle Scholar
  32. 32.
    V.R. Palkar, K. Prashanthi, Observation of magnetoelectric coupling in Bi(0.7)Dy(0.3)FeO(3) thin films at room temperature. Appl. Phys. Lett. 93(13), 132906 (2008)CrossRefGoogle Scholar
  33. 33.
    S. Madolappa et al., Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics. Bull. Mater. Sci. 39(2), 593–601 (2016)CrossRefGoogle Scholar
  34. 34.
    Y.H. Gu et al., Structural transformation and multiferroic properties of Sm and Ti co-doped BiFeO3 ceramics with Fe vacancies. Ceram. Int. 43(17), 14666–14671 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Amin et al., Multiferroicity in sol-gel synthesized Sr/Mn co-doped BiFeO3 nanoparticles. J. Mater. Sci. - Mater. Electron. 28(22), 17234–17244 (2017)CrossRefGoogle Scholar
  36. 36.
    A.K. Vishwakarma et al., Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrog. Energy 42(36), 22677–22686 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Anthoniappen et al., Electric field induced nanoscale polarization switching and piezoresponse in Sm and Mn co-doped BiFeO3 multiferroic ceramics by using piezoresponse force microscopy. Acta Mater. 132, 174–181 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Irfan et al., Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2017)CrossRefGoogle Scholar
  39. 39.
    Z. Cheng, et al., J. Appl. Phys. 103, 07E507 (2008)Google Scholar
  40. 40.
    R.Q. Guo et al., Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C 114(49), 21390–21396 (2010)CrossRefGoogle Scholar
  41. 41.
    P.R. Vanga, R.V. Mangalaraja, M. Ashok, Effect of co-doping on the optical, magnetic and photocatalytic properties of the Gd modified BiFeO3. J. Mater. Sci. - Mater. Electron. 27(6), 5699–5706 (2016)CrossRefGoogle Scholar
  42. 42.
    P. Suresh, P.D. Babu, S. Srinath, Role of (La, Gd) co-doping on the enhanced dielectric and magnetic properties of BiFeO3 ceramics. Ceram. Int. 42(3), 4176–4184 (2016)CrossRefGoogle Scholar
  43. 43.
    Q.H. Jiang, C.W. Nan, Z.J. Shen, Synthesis and properties of multiferroic la-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 89(7), 2123–2127 (2006)Google Scholar
  44. 44.
    Y.R. Song et al., Appl. Phys. Lett. 100, 242403 (2012)Google Scholar
  45. 45.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976)CrossRefGoogle Scholar
  46. 46.
    G. Arya, R.K. Kotnala, N.S. Negi, A novel approach to improve properties of BiFeO3 Nanomultiferroics. J. Am. Ceram. Soc. 97(5), 1475–1480 (2014)CrossRefGoogle Scholar
  47. 47.
    R. Haumont, J. Kreisel, P. Bouvier, Raman scattering of the model multiferroic oxide BiFeO3: Effect of temperature, pressure and stress. Phase Transit. 79(12), 1043–1064 (2006)CrossRefGoogle Scholar
  48. 48.
    W.B. White, The structure of particles and the structure of crystals: Information from vibrational spectroscopy. J. Ceram. Process. Res. 6(1), 1–9 (2005)Google Scholar
  49. 49.
    A.Z. Simoes et al., Strain behavior of lanthanum modified BiFeO3 thin films prepared via soft chemical method. J. Appl. Phys. 104(10), 104115 (2008)Google Scholar
  50. 50.
    K. Praveena et al., Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications. J. Magn. Magn. Mater. 420, 129–142 (2016)CrossRefGoogle Scholar
  51. 51.
    P. Kumar, C. Panda, M. Kar, Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3. Smart Mater. Struct. 24(4), 045028 (2015)CrossRefGoogle Scholar
  52. 52.
    T.J. Park et al., Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766–772 (2007)CrossRefGoogle Scholar
  53. 53.
    A. Jaiswal et al., Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 114(5), 2108–2115 (2010)CrossRefGoogle Scholar
  54. 54.
    D. Kothari et al., Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 320(3–4), 548–552 (2008)CrossRefGoogle Scholar
  55. 55.
    Y. Yang et al., High pressure Raman investigations of multiferroic BiFeO3. J. Phys. Condens. Matter 21(38) (2009)Google Scholar
  56. 56.
    S. Mandal et al., X-ray photoelectron spectroscopic investigation on the elemental chemical shifts in multiferroic BiFeO3 and its valence band structure. Solid State Sci. 12(10), 1803–1808 (2010)CrossRefGoogle Scholar
  57. 57.
    W. Eerenstein et al., Comment on" Epitaxial BiFeO3 multiferroic thin film heterostructures". Science 307(5713), 1203 (2005)CrossRefGoogle Scholar
  58. 58.
    L. Fang et al., Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO3 nanoparticles. Appl. Phys. Lett. 97(24), 242501 (2010)CrossRefGoogle Scholar
  59. 59.
    Z.X. Cheng et al., A way to enhance the magnetic moment of multiferroic bismuth ferrite. J. Phys. D. Appl. Phys. 43(24), 242001 (2010)CrossRefGoogle Scholar
  60. 60.
    S.R. Das et al., Structural and multiferroic properties of La-modified BiFeO3 ceramics. J. Appl. Phys. 101(3), 034104 (2007)CrossRefGoogle Scholar
  61. 61.
    Z.B. Xing et al., Structural, Raman, and dielectric studies on Multiferroic Mn-doped Bi1-xLaxFeO3 ceramics. J. Am. Ceram. Soc. 97(7), 2323–2330 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mehmet S. Bozgeyik
    • 1
    • 2
  • Rajesh K. Katiyar
    • 1
  • Ram S. Katiyar
    • 1
  1. 1.Department of Physics and Institute of Functional NanomaterialsUniversity of Puerto RicoSan JuanUSA
  2. 2.Department of Physics, Faculty of Science and LiteratureKahramanmaras Sutcu Imam UniversityKahramanmarasTurkey

Personalised recommendations