Advertisement

Journal of Electroceramics

, Volume 40, Issue 3, pp 225–234 | Cite as

Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9

  • Sophie Bresch
  • Björn Mieller
  • Christian Selleng
  • Thomas Stöcker
  • Ralf Moos
  • Torsten Rabe
Article
  • 157 Downloads

Abstract

Calcium cobaltite is one of the most promising oxide p-type thermoelectric materials. The solid-state reaction (or calcination, respectively), which is well known for large-scale powder synthesis of functional materials, can also be used for the synthesis of thermoelectric oxides. There are various calcination routines in literature for Ca3Co4O9 powder synthesis, but no systematic study has been done on the influence of calcination procedure on thermoelectric properties. Therefore, the influence of calcination conditions on the Seebeck coefficient and the electrical conductivity was studied by modifying calcination temperature, dwell time, particle size of raw materials and number of calcination cycles. This study shows that elevated temperatures, longer dwell times, or repeated calcinations during powder synthesis do not improve but deteriorate the thermoelectric properties of calcium cobaltite. Diffusion during calcination leads to idiomorphic grain growth, which lowers the driving force for sintering of the calcined powder. A lower driving force for sintering reduces the densification. The electrical conductivity increases linearly with densification. The calcination procedure barely influences the Seebeck coefficient. The calcination procedure has no influence on the phase formation of the sintered specimens.

Keywords

Thermoelectric oxides Calcination Solid-state-synthesis Power factor 

Notes

Acknowledgements

The authors are very grateful to the BAM colleagues S. Benemann for the SEM micrographs, F. Emmerling for XRD-analyses, T. Marcus for the electrical conductivity setup, F. Lindemann for analyzing the particle size distribution and W. Guether for the helpful advices.

References

  1. 1.
    G.S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics - Basic Principles and New Materials Developments (Springer-Verlag, Berlin, 2001), pp. 2–3Google Scholar
  2. 2.
    J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 32(3), 525–540 (2012)CrossRefGoogle Scholar
  3. 3.
    K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, X.D. Zhou, Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96(1), 1–23 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Ohta, T. Nomura, H. Ohta, K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La-or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97(3), 034106 (2005)CrossRefGoogle Scholar
  5. 5.
    R. Moos, A. Gnudi, K.H. Härdtl, Thermopower of Sr1−xLaxTiO3 ceramics. J. Appl. Phys. 78(8), 5042–5047 (1995)CrossRefGoogle Scholar
  6. 6.
    K. Park, K.Y. Ko, W.S. Seo, W.S. Cho, J.G. Kim, J.Y. Kim, High-temperature thermoelectric properties of polycrystalline Zn1−x−yAlxTiyO ceramics. J. Eur. Ceram. Soc. 27(2–3), 813–817 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Ohtaki, K. Araki, K. Yamamoto, High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 38(7), 1234–1238 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Yamaguchi, Y. Chonan, M. Oda, T. Komiyama, T. Aoyama, S. Sugiyama, Thermoelectric properties of ZnO ceramics co-doped with al and transition metals. J. Electron. Mater. 40(5), 723–727 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Ruttanapun, B. Boonchom, M. Thongkam, S. Kongtaweelert, C. Thanachayanont, A. Wichainchai, Electrical and optical properties of p-type CuFe1-xSnxO2 (x = 0.03, 0.05) delafossite-oxide. J. Appl. Phys. 113(2), 023103 (2013)CrossRefGoogle Scholar
  10. 10.
    T. Nozaki, K. Hayashi, T. Kajitani, Thermoelectric properties of delafossite-type oxide CuFe1-xNixO (0 <x< 0.05). J. Chem. Eng. Jpn 40(13), 1205–1209 (2007)CrossRefGoogle Scholar
  11. 11.
    T. Stöcker, J. Exner, M. Schubert, M. Streibl, R. Moos, Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO2. Materials 9(4), 227 (2016)CrossRefGoogle Scholar
  12. 12.
    P.H. Tsai, T. Norby, T.T. Tan, R. Donelson, Z.D. Chen, S. Li, Correlation of oxygen vacancy concentration and thermoelectric properties in Na0.73CoO2−δ. Appl. Phys. Lett. 96(14), 141905 (2010)CrossRefGoogle Scholar
  13. 13.
    F. Kenjiro, M. Tadashi, N. Kazuo, High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn. J. Appl. Phys. 40(7R), 4644 (2001)Google Scholar
  14. 14.
    K. Park, K.Y. Ko, J.G. Kim, W.S. Cho, Microstructure and high-temperature thermoelectric properties of CuO and NiO co-substituted NaCo2O4. Mater. Sci. Eng. B 129(1–3), 200–206 (2006)CrossRefGoogle Scholar
  15. 15.
    G. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Zhou, Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system. Appl. Phys. Lett. 80(20), 3760 (2002)CrossRefGoogle Scholar
  16. 16.
    H. Su, Y. Jiang, X. Lan, X. Liu, H. Zhong, D. Yu, Ca3 − xBixCo4O9 and Ca1 − ySmyMnO3 thermoelectric materials and their power-generation devices. Phys. Status Solidi 208(1), 147–155 (2011)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, Y. Lin, L. Jiang, C.-W. Nan, Z. Shen, Thermoelectric properties of Bi3+ substituted co-based misfit-layered oxides. J. Electroceram. 21(1), 748–751 (2008)CrossRefGoogle Scholar
  18. 18.
    F. Ryoji, M. Ichiro, I. Hiroshi, T. Tsunehiro, M. Uichiro, S. Satoshi, An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39(11B), L1127 (2000)Google Scholar
  19. 19.
    E. Woermann, A. Muan, Phase equilibria in the system CaO-cobalt oxide in air. J. Inorg. Nucl. Chem. 32(5), 1455–1459 (1970)CrossRefGoogle Scholar
  20. 20.
    D. Sedmidubský, V. Jakeš, O. Jankovský, J. Leitner, Z. Sofer, J. Hejtmánek, Phase equilibria in ca–co–O system. J. Solid State Chem. 194, 199–205 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Huang, B. Zhao, S. Lin, R. Ang, Y. Sun, M.A. White, Enhanced thermoelectric performance induced by Cr doping at ca-sites in Ca3Co4O9 system. J. Am. Ceram. Soc. 97(11), 3589–3596 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Huang, B. Zhao, R. Ang, S. Lin, W. Song, Y. Sun, Structure, magnetic and transport properties in Ca3Co4−xSbxO9 ceramics. J. Alloys Compd. 574, 233–239 (2013)CrossRefGoogle Scholar
  23. 23.
    G. Constantinescu, S. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, A. Sotelo, Effect of Sr substitution for ca on the Ca3Co4O9 thermoelectric properties. J. Alloys Compd. 577, 511–515 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Sotelo, G. Constantinescu, S. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, Improvement of thermoelectric properties of Ca3Co4O9 using soft chemistry synthetic methods. J. Eur. Ceram. Soc. 32(10), 2415–2422 (2012)CrossRefGoogle Scholar
  25. 25.
    D. Kenfaui, D. Chateigner, M. Gomina, J.G. Noudem, Anisotropy of the mechanical and thermoelectric properties of hot-pressed single-layer and multilayer thick Ca3Co4O9 ceramics. Int. J. Appl. Ceram. Technol. 8(1), 214–226 (2011)CrossRefGoogle Scholar
  26. 26.
    J.C. Diez, M.A. Torres, S. Rasekh, G. Constantinescu, M.A. Madre, A. Sotelo, Enhancement of Ca3Co4O9 thermoelectric properties by Cr for co substitution. Ceram. Int. 39(6), 6051–6056 (2013)CrossRefGoogle Scholar
  27. 27.
    T. Schulz, J. Töpfer, Thermoelectric properties of Ca3Co4O9 ceramics prepared by an alternative pressure-less sintering/annealing method. J. Alloys Compd. 659, 122–126 (2016)CrossRefGoogle Scholar
  28. 28.
    D. Kenfaui, B. Lenoir, D. Chateigner, B. Ouladdiaf, M. Gomina, J.G. Noudem, Development of multilayer textured Ca3Co4O9 materials for thermoelectric generators: Influence of the anisotropy on the transport properties. J. Eur. Ceram. Soc. 32(10), 2405–2414 (2012)CrossRefGoogle Scholar
  29. 29.
    F. Delorme, C.F. Martin, P. Marudhachalam, G. Guzman, D.O. Ovono, O. Fraboulet, Synthesis of thermoelectric Ca3Co4O9 ceramics with high ZT values from a CoIICoIII-layered double hydroxide precursor. Mater. Res. Bull. 47(11), 3287–3291 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Sopicka-Lizer, P. Smaczyński, K. Kozłowska, E. Bobrowska-Grzesik, J. Plewa, H. Altenburg, Preparation and characterization of calcium cobaltite for thermoelectric application. J. Eur. Ceram. Soc. 25(12), 1997–2001 (2005)CrossRefGoogle Scholar
  31. 31.
    R. Funahashi, M. Mikami, S. Urata, M. Kitawaki, T. Kouuchi, K. Mizuno, High-throughput screening of thermoelectric oxides and power generation modules consisting of oxide unicouples. Meas. Sci. Technol. 16(1), 70–80 (2005)CrossRefGoogle Scholar
  32. 32.
    J.G. Noudem, S. Lemonnier, M. Prevel, E.S. Reddy, E. Guilmeau, C. Goupil, Thermoelectric ceramics for generators. J. Eur. Ceram. Soc. 28(1), 41–48 (2008)CrossRefGoogle Scholar
  33. 33.
    R. Funahashi, S. Urata, Fabrication and application of an oxide thermoelectric system. Int. J. Appl. Ceram. Technol. 4(4), 297–307 (2007)CrossRefGoogle Scholar
  34. 34.
    J.W. Park, D.H. Kwak, S.H. Yoon, S.C. Choi, Thermoelectric properties of highly oriented Ca2.7Bi0.3Co4O9 fabricated by rolling process. J. Ceram. Soc. Jpn. 117(1365), 643–646 (2009)CrossRefGoogle Scholar
  35. 35.
    D. Segal, Chemical synthesis of ceramic materials. J. Mater. Chem. 7(8), 1297–1305 (1997)CrossRefGoogle Scholar
  36. 36.
    B. Jaffe, Piezoelectric Ceramics. (Elsevier Science, 2012)Google Scholar
  37. 37.
    P. Smaczyński, M. Sopicka-Lizer, K. Kozłowska, J. Plewa, Low temperature synthesis of calcium cobaltites in a solid state reaction. J. Electroceram. 18(3), 255–260 (2007)CrossRefGoogle Scholar
  38. 38.
    S. Yu, S. He, H. Chen, L. Guo, Effect of calcination temperature on oxidation state of cobalt in calcium cobaltite and relevant performance as intermediate-temperature solid oxide fuel cell cathodes. J. Power Sources 280, 581–587 (2015)CrossRefGoogle Scholar
  39. 39.
    F. Delorme, D. Ovono Ovono, P. Marudhachalam, C. Fernandez Martin, O. Fraboulet, Effect of precursors size on the thermoelectric properties of Ca3Co4O9 ceramics. Mater. Res. Bull. 47(5), 1169–1175 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Presečnik, S. Bernik, Influence of a mechano-chemical treatment on the synthesis and characteristics of p-type thermoelectric Ca3Co4O9 ceramics. J. Alloys Compd. 686, 708–716 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Antony, Design of Experiments for Engineers and Scientists (Elsevier Science, London, 2014)Google Scholar
  42. 42.
    M. Campari, S. Garribba, The behavior of type K thermocouples in temperature measurement: The Chromel P-Alumel thermocouples. Rev. Sci. Instrum. 42(5), 644–653 (1971)CrossRefGoogle Scholar
  43. 43.
    A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62(1), 166–175 (2000)CrossRefGoogle Scholar
  44. 44.
    P. Gerthsen, K.H. Härdtl, A. Csillag, Mobility determinations from weight measurements in solid solutions of (Ba, Sr)TiO3. Phys. Status Solidi 13(1), 127–133 (1972)CrossRefGoogle Scholar
  45. 45.
    A.J. Moulson, J.M. Herbert, Electroceramics (Wiley, Chichester, 2003), p. 25CrossRefGoogle Scholar
  46. 46.
    A. Sotelo, F.M. Costa, N.M. Ferreira, A. Kovalevsky, M.C. Ferro, V.S. Amaral, J.S. Amaral, S. Rasekh, M.A. Torres, M.A. Madre, J.C. Diez, Tailoring Ca3Co4O9 microstructure and performances using a transient liquid phase sintering additive. J. Eur. Ceram. Soc. 36(4), 1025–1032 (2016)CrossRefGoogle Scholar
  47. 47.
    M.A. Madre, F.M. Costa, N.M. Ferreira, A. Sotelo, M.A. Torres, G. Constantinescu, S. Rasekh, J.C. Diez, Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method. J. Eur. Ceram. Soc. 33(10), 1747–1754 (2013)CrossRefGoogle Scholar
  48. 48.
    W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976), pp. 449–452Google Scholar
  49. 49.
    D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2003), pp. 744–750Google Scholar
  50. 50.
    J. Hedvall, Solid State Chemistry (Elsevier, Amsterdam, 1966)Google Scholar
  51. 51.
    H. Salmang, R. Telle, H. Scholze, Keramik (Springer, Berlin, 2006), pp. 376–377Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division Advanced Technical CeramicsBundesanstalt für Materialforschung und –prüfung (BAM)BerlinGermany
  2. 2.Division Building MaterialsBundesanstalt für Materialforschung und –prüfung (BAM)BerlinGermany
  3. 3.Department of Functional MaterialsUniversity of BayreuthBayreuthGermany

Personalised recommendations