Skip to main content
Log in

Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Calcium cobaltite is one of the most promising oxide p-type thermoelectric materials. The solid-state reaction (or calcination, respectively), which is well known for large-scale powder synthesis of functional materials, can also be used for the synthesis of thermoelectric oxides. There are various calcination routines in literature for Ca3Co4O9 powder synthesis, but no systematic study has been done on the influence of calcination procedure on thermoelectric properties. Therefore, the influence of calcination conditions on the Seebeck coefficient and the electrical conductivity was studied by modifying calcination temperature, dwell time, particle size of raw materials and number of calcination cycles. This study shows that elevated temperatures, longer dwell times, or repeated calcinations during powder synthesis do not improve but deteriorate the thermoelectric properties of calcium cobaltite. Diffusion during calcination leads to idiomorphic grain growth, which lowers the driving force for sintering of the calcined powder. A lower driving force for sintering reduces the densification. The electrical conductivity increases linearly with densification. The calcination procedure barely influences the Seebeck coefficient. The calcination procedure has no influence on the phase formation of the sintered specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics - Basic Principles and New Materials Developments (Springer-Verlag, Berlin, 2001), pp. 2–3

    Google Scholar 

  2. J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 32(3), 525–540 (2012)

    Article  Google Scholar 

  3. K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, X.D. Zhou, Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96(1), 1–23 (2013)

    Article  Google Scholar 

  4. S. Ohta, T. Nomura, H. Ohta, K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La-or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97(3), 034106 (2005)

    Article  Google Scholar 

  5. R. Moos, A. Gnudi, K.H. Härdtl, Thermopower of Sr1−xLaxTiO3 ceramics. J. Appl. Phys. 78(8), 5042–5047 (1995)

    Article  Google Scholar 

  6. K. Park, K.Y. Ko, W.S. Seo, W.S. Cho, J.G. Kim, J.Y. Kim, High-temperature thermoelectric properties of polycrystalline Zn1−x−yAlxTiyO ceramics. J. Eur. Ceram. Soc. 27(2–3), 813–817 (2007)

    Article  Google Scholar 

  7. M. Ohtaki, K. Araki, K. Yamamoto, High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 38(7), 1234–1238 (2009)

    Article  Google Scholar 

  8. H. Yamaguchi, Y. Chonan, M. Oda, T. Komiyama, T. Aoyama, S. Sugiyama, Thermoelectric properties of ZnO ceramics co-doped with al and transition metals. J. Electron. Mater. 40(5), 723–727 (2011)

    Article  Google Scholar 

  9. C. Ruttanapun, B. Boonchom, M. Thongkam, S. Kongtaweelert, C. Thanachayanont, A. Wichainchai, Electrical and optical properties of p-type CuFe1-xSnxO2 (x = 0.03, 0.05) delafossite-oxide. J. Appl. Phys. 113(2), 023103 (2013)

    Article  Google Scholar 

  10. T. Nozaki, K. Hayashi, T. Kajitani, Thermoelectric properties of delafossite-type oxide CuFe1-xNixO (0 <x< 0.05). J. Chem. Eng. Jpn 40(13), 1205–1209 (2007)

    Article  Google Scholar 

  11. T. Stöcker, J. Exner, M. Schubert, M. Streibl, R. Moos, Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO2. Materials 9(4), 227 (2016)

    Article  Google Scholar 

  12. P.H. Tsai, T. Norby, T.T. Tan, R. Donelson, Z.D. Chen, S. Li, Correlation of oxygen vacancy concentration and thermoelectric properties in Na0.73CoO2−δ. Appl. Phys. Lett. 96(14), 141905 (2010)

    Article  Google Scholar 

  13. F. Kenjiro, M. Tadashi, N. Kazuo, High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn. J. Appl. Phys. 40(7R), 4644 (2001)

    Google Scholar 

  14. K. Park, K.Y. Ko, J.G. Kim, W.S. Cho, Microstructure and high-temperature thermoelectric properties of CuO and NiO co-substituted NaCo2O4. Mater. Sci. Eng. B 129(1–3), 200–206 (2006)

    Article  Google Scholar 

  15. G. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Zhou, Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system. Appl. Phys. Lett. 80(20), 3760 (2002)

    Article  Google Scholar 

  16. H. Su, Y. Jiang, X. Lan, X. Liu, H. Zhong, D. Yu, Ca3 − xBixCo4O9 and Ca1 − ySmyMnO3 thermoelectric materials and their power-generation devices. Phys. Status Solidi 208(1), 147–155 (2011)

    Article  Google Scholar 

  17. Y. Liu, Y. Lin, L. Jiang, C.-W. Nan, Z. Shen, Thermoelectric properties of Bi3+ substituted co-based misfit-layered oxides. J. Electroceram. 21(1), 748–751 (2008)

    Article  Google Scholar 

  18. F. Ryoji, M. Ichiro, I. Hiroshi, T. Tsunehiro, M. Uichiro, S. Satoshi, An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39(11B), L1127 (2000)

    Google Scholar 

  19. E. Woermann, A. Muan, Phase equilibria in the system CaO-cobalt oxide in air. J. Inorg. Nucl. Chem. 32(5), 1455–1459 (1970)

    Article  Google Scholar 

  20. D. Sedmidubský, V. Jakeš, O. Jankovský, J. Leitner, Z. Sofer, J. Hejtmánek, Phase equilibria in ca–co–O system. J. Solid State Chem. 194, 199–205 (2012)

    Article  Google Scholar 

  21. Y. Huang, B. Zhao, S. Lin, R. Ang, Y. Sun, M.A. White, Enhanced thermoelectric performance induced by Cr doping at ca-sites in Ca3Co4O9 system. J. Am. Ceram. Soc. 97(11), 3589–3596 (2014)

    Article  Google Scholar 

  22. Y. Huang, B. Zhao, R. Ang, S. Lin, W. Song, Y. Sun, Structure, magnetic and transport properties in Ca3Co4−xSbxO9 ceramics. J. Alloys Compd. 574, 233–239 (2013)

    Article  Google Scholar 

  23. G. Constantinescu, S. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, A. Sotelo, Effect of Sr substitution for ca on the Ca3Co4O9 thermoelectric properties. J. Alloys Compd. 577, 511–515 (2013)

    Article  Google Scholar 

  24. A. Sotelo, G. Constantinescu, S. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, Improvement of thermoelectric properties of Ca3Co4O9 using soft chemistry synthetic methods. J. Eur. Ceram. Soc. 32(10), 2415–2422 (2012)

    Article  Google Scholar 

  25. D. Kenfaui, D. Chateigner, M. Gomina, J.G. Noudem, Anisotropy of the mechanical and thermoelectric properties of hot-pressed single-layer and multilayer thick Ca3Co4O9 ceramics. Int. J. Appl. Ceram. Technol. 8(1), 214–226 (2011)

    Article  Google Scholar 

  26. J.C. Diez, M.A. Torres, S. Rasekh, G. Constantinescu, M.A. Madre, A. Sotelo, Enhancement of Ca3Co4O9 thermoelectric properties by Cr for co substitution. Ceram. Int. 39(6), 6051–6056 (2013)

    Article  Google Scholar 

  27. T. Schulz, J. Töpfer, Thermoelectric properties of Ca3Co4O9 ceramics prepared by an alternative pressure-less sintering/annealing method. J. Alloys Compd. 659, 122–126 (2016)

    Article  Google Scholar 

  28. D. Kenfaui, B. Lenoir, D. Chateigner, B. Ouladdiaf, M. Gomina, J.G. Noudem, Development of multilayer textured Ca3Co4O9 materials for thermoelectric generators: Influence of the anisotropy on the transport properties. J. Eur. Ceram. Soc. 32(10), 2405–2414 (2012)

    Article  Google Scholar 

  29. F. Delorme, C.F. Martin, P. Marudhachalam, G. Guzman, D.O. Ovono, O. Fraboulet, Synthesis of thermoelectric Ca3Co4O9 ceramics with high ZT values from a CoIICoIII-layered double hydroxide precursor. Mater. Res. Bull. 47(11), 3287–3291 (2012)

    Article  Google Scholar 

  30. M. Sopicka-Lizer, P. Smaczyński, K. Kozłowska, E. Bobrowska-Grzesik, J. Plewa, H. Altenburg, Preparation and characterization of calcium cobaltite for thermoelectric application. J. Eur. Ceram. Soc. 25(12), 1997–2001 (2005)

    Article  Google Scholar 

  31. R. Funahashi, M. Mikami, S. Urata, M. Kitawaki, T. Kouuchi, K. Mizuno, High-throughput screening of thermoelectric oxides and power generation modules consisting of oxide unicouples. Meas. Sci. Technol. 16(1), 70–80 (2005)

    Article  Google Scholar 

  32. J.G. Noudem, S. Lemonnier, M. Prevel, E.S. Reddy, E. Guilmeau, C. Goupil, Thermoelectric ceramics for generators. J. Eur. Ceram. Soc. 28(1), 41–48 (2008)

    Article  Google Scholar 

  33. R. Funahashi, S. Urata, Fabrication and application of an oxide thermoelectric system. Int. J. Appl. Ceram. Technol. 4(4), 297–307 (2007)

    Article  Google Scholar 

  34. J.W. Park, D.H. Kwak, S.H. Yoon, S.C. Choi, Thermoelectric properties of highly oriented Ca2.7Bi0.3Co4O9 fabricated by rolling process. J. Ceram. Soc. Jpn. 117(1365), 643–646 (2009)

    Article  Google Scholar 

  35. D. Segal, Chemical synthesis of ceramic materials. J. Mater. Chem. 7(8), 1297–1305 (1997)

    Article  Google Scholar 

  36. B. Jaffe, Piezoelectric Ceramics. (Elsevier Science, 2012)

  37. P. Smaczyński, M. Sopicka-Lizer, K. Kozłowska, J. Plewa, Low temperature synthesis of calcium cobaltites in a solid state reaction. J. Electroceram. 18(3), 255–260 (2007)

    Article  Google Scholar 

  38. S. Yu, S. He, H. Chen, L. Guo, Effect of calcination temperature on oxidation state of cobalt in calcium cobaltite and relevant performance as intermediate-temperature solid oxide fuel cell cathodes. J. Power Sources 280, 581–587 (2015)

    Article  Google Scholar 

  39. F. Delorme, D. Ovono Ovono, P. Marudhachalam, C. Fernandez Martin, O. Fraboulet, Effect of precursors size on the thermoelectric properties of Ca3Co4O9 ceramics. Mater. Res. Bull. 47(5), 1169–1175 (2012)

    Article  Google Scholar 

  40. M. Presečnik, S. Bernik, Influence of a mechano-chemical treatment on the synthesis and characteristics of p-type thermoelectric Ca3Co4O9 ceramics. J. Alloys Compd. 686, 708–716 (2016)

    Article  Google Scholar 

  41. J. Antony, Design of Experiments for Engineers and Scientists (Elsevier Science, London, 2014)

    Google Scholar 

  42. M. Campari, S. Garribba, The behavior of type K thermocouples in temperature measurement: The Chromel P-Alumel thermocouples. Rev. Sci. Instrum. 42(5), 644–653 (1971)

    Article  Google Scholar 

  43. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62(1), 166–175 (2000)

    Article  Google Scholar 

  44. P. Gerthsen, K.H. Härdtl, A. Csillag, Mobility determinations from weight measurements in solid solutions of (Ba, Sr)TiO3. Phys. Status Solidi 13(1), 127–133 (1972)

    Article  Google Scholar 

  45. A.J. Moulson, J.M. Herbert, Electroceramics (Wiley, Chichester, 2003), p. 25

    Book  Google Scholar 

  46. A. Sotelo, F.M. Costa, N.M. Ferreira, A. Kovalevsky, M.C. Ferro, V.S. Amaral, J.S. Amaral, S. Rasekh, M.A. Torres, M.A. Madre, J.C. Diez, Tailoring Ca3Co4O9 microstructure and performances using a transient liquid phase sintering additive. J. Eur. Ceram. Soc. 36(4), 1025–1032 (2016)

    Article  Google Scholar 

  47. M.A. Madre, F.M. Costa, N.M. Ferreira, A. Sotelo, M.A. Torres, G. Constantinescu, S. Rasekh, J.C. Diez, Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method. J. Eur. Ceram. Soc. 33(10), 1747–1754 (2013)

    Article  Google Scholar 

  48. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976), pp. 449–452

    Google Scholar 

  49. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2003), pp. 744–750

    Google Scholar 

  50. J. Hedvall, Solid State Chemistry (Elsevier, Amsterdam, 1966)

    Google Scholar 

  51. H. Salmang, R. Telle, H. Scholze, Keramik (Springer, Berlin, 2006), pp. 376–377

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the BAM colleagues S. Benemann for the SEM micrographs, F. Emmerling for XRD-analyses, T. Marcus for the electrical conductivity setup, F. Lindemann for analyzing the particle size distribution and W. Guether for the helpful advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Bresch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bresch, S., Mieller, B., Selleng, C. et al. Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9. J Electroceram 40, 225–234 (2018). https://doi.org/10.1007/s10832-018-0124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0124-3

Keywords

Navigation