Advertisement

Journal of Electroceramics

, Volume 40, Issue 3, pp 197–202 | Cite as

Microstructure and electrical properties of (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics prepared by single-step, liquid-phase, solid-state reactive sintering

  • Nahum Masó
  • Cecile Marcelot
  • Laëtitia Fabre
  • Jean-Baptiste Fruhauf
  • Pascal Dufour
  • Christophe Tenailleau
  • Bénédicte Warot-Fonrose
  • Etienne Snoeck
  • Sophie Guillemet-Fritsch
Article
  • 32 Downloads

Abstract

(Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics have been obtained by single-step, liquid-phase, solid-state reactive sintering in the temperature range 1250–1350 °C using stoichiometric amounts of BaTiO3, SrTiO3 and Bi4Ti3O12. Their microstructure and electrical properties have been studied by X-Ray diffraction and fluorescence, scanning and transmission electron microscopy and impedance spectroscopy. The relative density, Dr, relative permittivity, \( {\varepsilon}_r^{\prime } \), and dissipation factor, tan δ, at room temperature and the bulk and grain boundary resistivity, Rb and Rgb, and activation energies, \( {E}_a^b \) and \( {E}_a^{gb} \), are approximately independent of the sintering temperature with values around e.g. Dr ~97.5 %, \( {\varepsilon}_r^{\prime } \) ~1790, tan δ ~0.06 %, \( {R}_b^{500^oC} \) ~26 kΩ cm, \( {E}_a^{gb} \) ~1.03 eV, \( {R}_{gb}^{500^oC} \) ~217 kΩ cm and \( {E}_a^{gb} \) ~1.41 eV. By contrast, the temperature coefficient of capacitance, TCC, increases linearly from ~10 ppm oC−1 to ~21 ppm oC−1 on increasing sintering temperature. Comments on the influence of the sintering temperature on the chemical composition of the ceramics are made.

Keywords

Liquid-phase Solid-state reactive sintering Electrical properties (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics 

Notes

Acknowledgements

This work was supported by Fonds Innovation Recherche du Conseil Départemental des Hautes-Pyrénées [grant number 14051044].

References

  1. 1.
    M. McQuarrie, J. Am. Ceram. Soc. 38, 444 (1955)CrossRefGoogle Scholar
  2. 2.
    J.A. Basmajian, R.C. DeVries, J. Am. Ceram. Soc. 40, 373 (1957)CrossRefGoogle Scholar
  3. 3.
    E.N. Bunting, G.R. Shelton, A.S. Creamer, J. Res. Natl. Bur. Stand. 38, 337 (1947)CrossRefGoogle Scholar
  4. 4.
    S. Kisaka, S. Ikegami, H. Sasaki, J. Phys. Soc. Jpn. 14, 1680 (1959)CrossRefGoogle Scholar
  5. 5.
    B. Jaffe, W. R. Cook Jr and H. Jaffe, in Piezoelectric Ceramics, ed. By J. P. Roberts and P. Popper (Academic Press, London, 1971) ch. 3, pp. 53Google Scholar
  6. 6.
    V.V. Lemanov, E.P. Smirnova, P.P. Syrnikov, E.A. Tarakanov, Phys. Rev. B 54, 3151 (1996)CrossRefGoogle Scholar
  7. 7.
    L. Zhou, P.M. Vilarinho, J.L. Baptista, J. Eur. Ceram. Soc. 19, 2015 (1999)CrossRefGoogle Scholar
  8. 8.
    L. Zhou, P.M. Vilarinho, J.L. Baptista, Bol. Soc. Esp. Ceram. V. 38, 599 (1999)CrossRefGoogle Scholar
  9. 9.
    L. Zhou, P.M. Vilarinho, J.L. Baptista, J. Electroceram. 5, 191 (2000)CrossRefGoogle Scholar
  10. 10.
    L. Zhou, P.M. Vilarinho, J.L. Baptista, J. Eur. Ceram. Soc. 21, 531 (2001)CrossRefGoogle Scholar
  11. 11.
    W. Chen, X. Yao, X. Wei, Solid State Commun. 141, 84 (2007)CrossRefGoogle Scholar
  12. 12.
    W. Chen, X. Yao, X. Wei, J. Mater. Sci. 43, 1144 (2008)CrossRefGoogle Scholar
  13. 13.
    F. Bahri, H. Khemakhem, Ceram. Int. 39, 7571 (2013)CrossRefGoogle Scholar
  14. 14.
    R.M. German, P. Suri, S.J. Park, J. Mater. Sci. 44, 1 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Tong, D. Clark, M. Hoban, R. O'Hayre, Solid State Ionics 181, 496 (2010)CrossRefGoogle Scholar
  16. 16.
    N. Zhu, A.R. West, J. Am. Ceram. Soc. 93, 295 (2010)CrossRefGoogle Scholar
  17. 17.
    E.I. Speranskaya, I.S. Rez, L.V. Kozlova, V.M. Skorikov, V.I. Slavov, Izv. Akad. Nauk SSSR Neorg. Mater. 1, 232 (1965)Google Scholar
  18. 18.
    J.R. Esquivel-Elizondo, B.B. Hinojosa, J.C. Nino, Chem. Mater. 23, 4965 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Lopez-Martinez, A. Romero-Serrano, A. Hernandez-Ramirez, B. Zeifert, C. Gomez-Yañez, R. Martinez-Sanchez, Thermochim. Acta 16, 35 (2011)CrossRefGoogle Scholar
  20. 20.
    Y.F. Kargin, S.N. Ivicheva, V.V. Volkov, Russ. J. Inorg. Chem. 60, 619 (2015)CrossRefGoogle Scholar
  21. 21.
    D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIRIMATUniversité de Toulouse, CNRS, INPT, UPSToulouse Cedex 9France
  2. 2.CEMES-CNRSToulouse Cedex 4France
  3. 3.SCT Société des Céramiques Techniques, ZI Ouest Route d’OursbelilleBazetFrance

Personalised recommendations