Advertisement

Journal of Electroceramics

, Volume 40, Issue 3, pp 190–196 | Cite as

Multiferroic properties of single-phase perovskite structure 0.8BiFeO3–0.2SrTiO3 ceramics synthesized using the Pechini method

  • Guoyu Qian
  • Changming Zhu
  • Chongyang Yin
  • Liguang Wang
  • Yilun Wang
  • Canglong Li
  • Songliu Yuan
Article
  • 127 Downloads

Abstract

Single-phase perovskite structure 0.8BiFeO3–0.2SrTiO3 ceramics were synthesized by a modified sol-gel method. According to the scanning electron microscopy results, the grain sizes of as-prepared samples increased obviously as the annealing temperature rose. Compared with pure BiFeO3, superior multiferroic and dielectric properties were obtained i.e. remnant magnetization Mr = 0.10 emu/g with a maximum magnetic field of 50 kOe and maximum polarization Pmax = 8.738 μC/cm2 with an applied electric field of 50 kV/cm. Furthermore, the volcano-shape evolution of diffraction peaks and maximum magnetization with increasing sintering temperature indicate that appropriate annealing temperature has a remarkable influence on the enhancement of the multiferroic properties and dielectric performance of 0.8BiFeO3–0.2SrTiO3 ceramics. The annealing temperature that yields the most favorable multiferroic properties for the 0.8BiFeO3–0.2SrTiO3 solid solution ceramic is somewhere close to 1300 K.

Keywords

BiFeO3 Multiferroic Ceramics Pechini method Annealing 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 11174092 and 11474111). We would like to thank the staff of the Analysis Center, School of Materials Engineering of Huazhong University of Science and Technology and National Laboratory for Optoelectronics (China) for their assistance in various measurements.

References

  1. 1.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426, 55 (2003)CrossRefGoogle Scholar
  2. 2.
    N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005)CrossRefGoogle Scholar
  3. 3.
    S.W. Cheong, M. Mostovoy, Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Béa, M. Gajek, M. Bibes, A. Barthélémy, Spintronics with multiferroics. J. Phys. Condens. Matter 20, 434221 (2008)CrossRefGoogle Scholar
  5. 5.
    A. Roy, R. Gupta, A. Garg, Multiferroic memories. Adv. Cond. Mat. Phys. 2012, 1 (2014)Google Scholar
  6. 6.
    M. Fiebig, T. Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002)CrossRefGoogle Scholar
  7. 7.
    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429, 392 (2004)CrossRefGoogle Scholar
  8. 8.
    R. Ramesh, N.A. Spaldin, Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007)CrossRefGoogle Scholar
  9. 9.
    N.A. Hill, Why are there so few magnetic ferroelectrics. J. Phys. Chem. B 104, 6694 (2000)CrossRefGoogle Scholar
  10. 10.
    G. Zerihun, G. Gong, S. Huang, S. Yuan, Dielectric and relaxor ferroelectric properties of Sr4CaLaTi3Nb7O30 tetragonal tungsten bronze ceramics. Ceram. Int. 41, 12426 (2015)CrossRefGoogle Scholar
  11. 11.
    I. Sosnowska, T. Peterlin-Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15, 4835 (1982)CrossRefGoogle Scholar
  12. 12.
    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  13. 13.
    R.A. Agarwal, S.S. Ashima, N. Ahlawat, Structural transformation and improved dielectric and magnetic properties in Ti-substituted Bi0.8La0.2FeO3 multiferroics. J. Phys. D. Appl. Phys. 45, 165001 (2012)CrossRefGoogle Scholar
  14. 14.
    W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Comment on "Epitaxial BiFeO3 multiferroic thin film heterostructures". Science 307, 1203 (2005)CrossRefGoogle Scholar
  15. 15.
    X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar
  16. 16.
    G.L. Yuan, S.W. Or, J.M. Liu, Z.G. Liu, Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 89, 052905 (2006)CrossRefGoogle Scholar
  17. 17.
    J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, S.W. Kirchoefer, J. Levy, D.G. Schlom, Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758 (2004)CrossRefGoogle Scholar
  18. 18.
    A. Tkach, J.S. Amaral, S. Zlotnik, V.S. Amaral, P.M. Vilarinho, Enhancement of the dielectric permittivity and magnetic properties of Dy substituted strontium titanate ceramics. J. Eur. Ceram. Soc. 38, 605 (2018)CrossRefGoogle Scholar
  19. 19.
    F.M. Pontes, E.J.H. Lee, E.R. Leite, E. Longo, J.A. Varela, High dielectric constant of SrTiO3 thin films prepared by chemical process. J. Mater. Sci. 35, 4783 (2000)CrossRefGoogle Scholar
  20. 20.
    C.B. Samantaray, H. Sim, H. Hwang, The electronic structures and optical properties of BaTiO3 and SrTiO3 using first-principles calculations. Microelectron. J. 36, 725 (2005)CrossRefGoogle Scholar
  21. 21.
    L. Kim, J. Kim, D. Jung, J. Lee, Strain effect on dielectric property of SrTiO3 lattice: First-principles study. Thin Solid Films 475, 97 (2005)CrossRefGoogle Scholar
  22. 22.
    Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Enhanced polarization and magnetization in multiferroic (1-x)BiFeO3-xSrTiO3 solid solution. Solid State Sci. 13, 2196 (2011)CrossRefGoogle Scholar
  23. 23.
    B. Bhushan, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, Sr induced modification of structural, optical and magnetic properties in Bi1-xSrxFeO3 (x =0, 0.01, 0.03, 0.05 and 0.07) multiferroic nanoparticles. Solid State Sci. 12, 1063 (2010)CrossRefGoogle Scholar
  24. 24.
    G.Y. Qian, C.M. Zhu, L.G. Wang, Z.M. Tian, C.Y. Yin, C.L. Li, S.L. Yuan, Enhanced ferromagnetic, ferroelectric, and dielectric properties in BiFeO3-SrTiO3-Bi0.5Na0.5TiO3 ceramics. J. Electron. Mater. 46, 6717 (2017)CrossRefGoogle Scholar
  25. 25.
    H.B. Liu, X. Yang, Structural, dielectric, and magnetic properties of BiFeO3-SrTiO3 solid solution ceramics. Ferroelectrics 500, 310 (2016)CrossRefGoogle Scholar
  26. 26.
    N. Itoh, T. Shimura, W. Sakamoto, T. Yogo, Effects of SrTiO3 content and Mn doping on dielectric and magnetic properties of BiFeO3-SrTiO3 ceramics. J. Ceram. Soc. Jpn. 117, 939 (2009)CrossRefGoogle Scholar
  27. 27.
    W. Zheng et al., Ferroic phase transitions and switching properties of modified BiFeO3-SrTiO3 multiferroic perovskites. J. Mater. Sci. Mater. Electron. 27, 12067 (2016)CrossRefGoogle Scholar
  28. 28.
    D.J. Goossens, C.J. Weekes, M. Avdeev, W.D. Hutchison, Crystal and magnetic structure of (1-x)BiFeO3-xSrTiO3 (x = 0.2, 0.3, 0.4 and 0.8). J. Solid State Chem. 207, 111 (2013)CrossRefGoogle Scholar
  29. 29.
    V. Singh, A. Daryapurkar, S.S. Rajput, S. Mukherjee, A. Garg, R. Gupta, Effect of annealing atmosphere on leakage and dielectric characteristics of multiferroic gallium ferrite. J. Am. Ceram. Soc. 100, 5226 (2017)CrossRefGoogle Scholar
  30. 30.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766 (2007)CrossRefGoogle Scholar
  31. 31.
    T. Wang, S.H. Song, M. Wang, J.Q. Li, M. Ravi, Effect of annealing atmosphere on the structural and electrical properties of BiFeO3 multiferroic ceramics prepared by sol-gel and spark plasma sintering techniques. Ceram. Int. 42, 7328 (2016)CrossRefGoogle Scholar
  32. 32.
    Z.M. Tian et al., Spin-glasslike behavior and exchange bias in multiferroic Bi1/3Sr2/3FeO3 ceramics. Appl. Phys. Lett. 96, 142516 (2010)CrossRefGoogle Scholar
  33. 33.
    G. Zerihun, S. Huang, G. Gong, S. Yuan, Influence of Eu doping on the magnetoelectric and dielectric properties of BiFeO3-Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 41, 6589 (2015)CrossRefGoogle Scholar
  34. 34.
    X.M. Jiang, Z.Q. Wu, Braggs law with refractire correction of low-angle X-ray diffraction for periodic multilayers. Chin. Phys. Lett. 8, 356 (1991)CrossRefGoogle Scholar
  35. 35.
    I. Sosnowska, W. Schafer, W. Kockelmann, K.H. Andersen, I.O. Troyanchuk, Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese. Appl. Phys. A: Mater. Sci. Process A 74, 1040 (2002)CrossRefGoogle Scholar
  36. 36.
    S.B. Ren, C.J. Lu, J.S. Liu, H.M. Shen, Y.N. Wang, In situ study of the evolution of domain structure in free-standing polycrystalline PbTiO3 thin films under external stress. Phys. Rev. B 55, 3485 (1997)CrossRefGoogle Scholar
  37. 37.
    S. Ahmed, S.K. Barik, Enhanced electric and magnetic properties of (BiLi)1/2(Fe2/3W1/3)O3 multiferroic as compared to BiFeO3. Ceram. Int. 42, 5659 (2016)CrossRefGoogle Scholar
  38. 38.
    Stuart J. Penn, et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc. 80, 1985 (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guoyu Qian
    • 1
  • Changming Zhu
    • 1
    • 2
  • Chongyang Yin
    • 1
  • Liguang Wang
    • 1
    • 2
  • Yilun Wang
    • 3
  • Canglong Li
    • 1
  • Songliu Yuan
    • 1
  1. 1.School of PhysicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.College of Physics and TechnologyGuangxi Normal UniversityGuilinPeople’s Republic of China
  3. 3.Wuhan National Laboratory for OptoelectronicsWuhanPeople’s Republic of China

Personalised recommendations