Skip to main content
Log in

The effect of sintering temperature and time on the growth of single crystals of 0.75 (Na0.5Bi0.5)TiO3–0.25 SrTiO3 by solid state crystal growth

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Materials in the (Na0.5Bi0.5)TiO3–SrTiO3 system are of interest for use as lead-free piezoelectric actuators due to high electric-field induced strains. Piezoelectric properties may be further improved by growing single crystals but as yet work on single crystal growth in this system is limited. In the present work, single crystals of composition 0.75 (Na0.5Bi0.5)TiO3−0.25 SrTiO3 were grown by solid state crystal growth (SSCG) on [001] SrTiO3 seed crystals and the dependence of crystal growth distance and matrix grain growth on sintering temperature investigated. Electron backscattered diffraction and X-ray diffraction analysis show that the single crystals grow epitaxially on the seed crystals. Energy dispersive spectroscopy indicates that the grown crystals are slightly Na-deficient, while X-ray photoelectron spectroscopy indicates the presence of oxygen vacancies. Single crystal growth distance, mean matrix grain size and grain size distribution as a function of sintering temperature and time are presented. Increasing the sintering temperature increases both single crystal and matrix grain growth rates. The optimum single crystal growth temperature is found to be 1250°C. The effect of sintering temperature on the single crystal and matrix grain growth behavior is explained using the mixed control mechanism of microstructural evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92(6), 1153 (2009)

    Article  Google Scholar 

  2. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications. 2nd Edn, (John Wiley & Sons, Chichester, 2005), pp. 339-410.

  3. M. Villafuerte-Castrejón, E. Morán, A. Reyes-Montero, R. Vivar-Ocampo, J.-A. Peña-Jiménez, S.-O. Rea-López, L. Pardo, Materials 9(1), 21 (2016)

    Article  Google Scholar 

  4. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29(1), 71 (2012)

    Article  Google Scholar 

  5. Q. Li, S. Gao, L. Ning, H. Fan, Z. Liu, Z. Li, Ceram. Int. 43(7), 5367 (2017)

    Article  Google Scholar 

  6. W. Bai, D. Chen, P. Zheng, J. Zhang, F. Wen, B. Shen, J. Zhai, Z. Ji, J. Alloys Compd. 709, 646 (2017)

    Article  Google Scholar 

  7. S.-Y. Choi, S.-J. Jeong, D.-S. Lee, M.-S. Kim, J.-S. Lee, J.H. Cho, B.I. Kim, Y. Ikuhara, Chem. Mater. 24(17), 3363 (2012)

    Article  Google Scholar 

  8. M. Acosta, L.A. Schmitt, L. Molina-Luna, M.C. Scherrer, M. Brilz, K.G. Webber, M. Deluca, H.-J. Kleebe, J. Rödel, W. Donner, J. Am. Ceram. Soc. 98(11), 3405 (2015)

    Article  Google Scholar 

  9. C.W. Ahn, G. Choi, I.W. Kim, J.-S. Lee, K. Wang, Y. Hwang, W. Jo, NPG Asia Mater 9, e346 (2017)

    Article  Google Scholar 

  10. W. Bai, D. Chen, P. Zheng, J. Xi, Y. Zhou, B. Shen, J. Zhai, Z. Ji, J. Eur. Ceram. Soc. 37(7), 2591 (2017)

    Article  Google Scholar 

  11. R.Z. Zuo, H. Qi, J. Fu, J.F. Li, M. Shi, Y.D. Xu, Appl. Phys. Lett. 108(23), 5 (2016)

    Article  Google Scholar 

  12. C. Chen, X. Zhao, Y. Wang, H. Zhang, H. Deng, X. Li, X. Jiang, X. Jiang, H. Luo, Appl. Phys. Lett. 108(2), 022903 (2016)

    Article  Google Scholar 

  13. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, J. Mater. Chem. C 2(41), 8796 (2014)

    Article  Google Scholar 

  14. K. Praveena, K.B.R. Varma, J. Mater. Sci.: Mater. Electron 25(1), 111 (2014)

    Google Scholar 

  15. K. Praveena, K.B.R. Varma, J. Mater. Sci.: Mater. Electron 25(12), 5403 (2014)

    Google Scholar 

  16. J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, Z. Kutnjak, Appl. Phys. Lett. 106(20), 202905 (2015)

    Article  Google Scholar 

  17. J. Li, Y. Bai, S. Qin, J. Fu, R. Zuo, L. Qiao, Appl. Phys. Lett. 109(16), 162902 (2016)

    Article  Google Scholar 

  18. C. Cui, Y. Pu, Z. Gao, J. Wan, Y. Guo, C. Hui, Y. Wang, Y. Cui, J. Alloys Compd. 711, 319 (2017)

    Article  Google Scholar 

  19. T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, J. Mater. Chem. A 5(2), 554 (2017)

    Article  Google Scholar 

  20. G. Smolenskii, V. Isupov, A. Agranovskaya, N. Krainik, Sov. Phys. Solid State 2(11), 2651 (1961)

    Google Scholar 

  21. G.O. Jones, P.A. Thomas, Acta Crystallogr. B 58(2), 168 (2002)

    Article  Google Scholar 

  22. Y.-Q. Lu, Y.-X. Li, J. Adv. Dielectr. 01(03), 269 (2011)

    Article  Google Scholar 

  23. K. Roleder, J. Suchanicz, A. Kania, Ferroelectrics 89, 1–5 (1989)

    Article  Google Scholar 

  24. J. Suchanicz, K. Roleder, A. Kania, J. Hańaderek, Ferroelectrics 77(1), 107 (1988)

    Article  Google Scholar 

  25. Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 104(12), 124106 (2008)

    Article  Google Scholar 

  26. X. Tan, C. Ma, J. Frederick, S. Beckman, K.G. Webber, J. Am. Ceram. Soc. 94(12), 4091 (2011)

    Article  Google Scholar 

  27. C.W. Tai, S.H. Choy, H.L.W. Chan, J. Am. Ceram. Soc. 91(10), 3335 (2008)

    Article  Google Scholar 

  28. Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45(9B), 7409 (2006)

    Article  Google Scholar 

  29. Y. Hiruma, H. Nagata, T. Takenaka, Jpn J. Appl. Phys 48(9S1), 09KC08 (2009)

    Google Scholar 

  30. P.K. Panda, J. Mater. Sci. 44(19), 5049 (2009)

    Article  Google Scholar 

  31. A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Mater. Chem. Phys. 143(3), 1282 (2014)

    Article  Google Scholar 

  32. R. Cheng, Z. Xu, R. Chu, J. Hao, J. Du, G. Li, J. Eur. Ceram. Soc. 36(3), 489 (2016)

    Article  Google Scholar 

  33. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phys. Lett. 92(26), 262904 (2008)

    Article  Google Scholar 

  34. D. Rout, K.-S. Moon, S.-J.L. Kang, I.W. Kim, J. Appl. Phys. 108(8), 084102 (2010)

    Article  Google Scholar 

  35. S. Sayyed, S.A. Acharya, P. Kautkar, V. Sathe, RSC Adv. 5(63), 50644 (2015)

    Article  Google Scholar 

  36. J.R. Gomah-Pettry, A.N. Salak, P. Marchet, V.M. Ferreira, J.P. Mercurio, Phys. Status Solidi B 241(8), 1949 (2004)

    Article  Google Scholar 

  37. Y. Watanabe, Y. Hiruma, H. Nagata, T. Takenaka, Ceram. Int. 34(4), 761 (2008)

    Article  Google Scholar 

  38. M. Acosta, W. Jo, J. Rödel, J. Am. Ceram. Soc. 97(6), 1937 (2014)

    Article  Google Scholar 

  39. J.-H. Cho, J.-S. Park, S.-W. Kim, Y.-H. Jeong, J.-S. Yun, W.-I. Park, Y.-W. Hong, J.-H. Paik, J. Eur. Ceram. Soc. 37(10), 3313 (2017)

    Article  Google Scholar 

  40. J.-H. Park, H.-Y. Lee, S.-J.L. Kang, Appl. Phys. Lett. 104(22), 222910 (2014)

    Article  Google Scholar 

  41. S. Sheets, A. Soukhojak, N. Ohashi, Y. Chiang, J. Appl. Phys. 90(10), 5287 (2001)

    Article  Google Scholar 

  42. S.R. Kanuru, K. Baskar, R. Dhanasekaran, B. Kumar, J. Cryst. Growth 441, 64 (2016)

    Article  Google Scholar 

  43. M. Woll, M. Burianek, D. Klimm, S. Gorfman, M. Mühlberg, J. Cryst. Growth 401, 351 (2014)

    Article  Google Scholar 

  44. J. Yang, Q. Yang, Y. Li, Y. Liu, J. Eur. Ceram. Soc. 36(3), 541 (2016)

    Article  Google Scholar 

  45. J. Bubesh Babu, M. He, D.F. Zhang, X.L. Chen, R. Dhanasekaran, Appl. Phys. Lett. 90(10), 102901 (2007)

    Article  Google Scholar 

  46. K.-S. Moon, D. Rout, H.-Y. Lee, S.-J.L. Kang, J. Cryst. Growth 317(1), 28 (2011)

    Article  Google Scholar 

  47. S.-J.L. Kang, J.-H. Park, S.-Y. Ko, H.-Y. Lee, J. Am. Ceram. Soc. 98(2), 347 (2015)

    Article  Google Scholar 

  48. J.G. Fisher, A. Benčan, J. Holc, M. Kosec, S. Vernay, D. Rytz, J. Cryst. Growth 303(2), 487 (2007)

    Article  Google Scholar 

  49. M.U. Farooq, J.G. Fisher, Ceram. Int. 40(2), 3199 (2014)

    Article  Google Scholar 

  50. M.U. Farooq, S.Y. Ko, J.G. Fisher, Adv. Appl. Ceram. 115(2), 81 (2016)

    Article  Google Scholar 

  51. D. Lee, H. Vu, H. Sun, T.L. Pham, D.T. Nguyen, J.-S. Lee, J.G. Fisher, Ceram. Int. 42(16), 18894 (2016)

    Article  Google Scholar 

  52. D.K. Lee, H. Vu, J.G. Fisher, J. Electroceram. 34(2–3), 150 (2015)

    Article  Google Scholar 

  53. J.-H. Park, S.-J.L. Kang, AIP Adv. 6(1), 015310 (2016)

    Article  Google Scholar 

  54. H. Sun, J.G. Fisher, S.-H. Moon, H. Tran Tran, J.-S. Lee, H.-S. Han, H.-P. Kim, W. Jo, Mater. Sci. Eng. B 223, 109 (2017)

    Article  Google Scholar 

  55. J. Koruza, V. Rojas, L. Molina-Luna, U. Kunz, M. Duerrschnabel, H.-J. Kleebe, M. Acosta, J. Eur. Ceram. Soc. 36(4), 1009 (2016)

    Article  Google Scholar 

  56. S.J.L. Kang, M.G. Lee, S.M. An, J. Am. Ceram. Soc. 92(7), 1464 (2009)

    Article  Google Scholar 

  57. S.-J.L. Kang, S.-Y. Ko, S.-Y. Moon, J. Ceram. Soc. Jpn. 124(4), 259 (2016)

    Article  Google Scholar 

  58. R.D. Shannon, Acta Crystallogr. A 32(5), 751 (1976)

    Article  Google Scholar 

  59. T. Yang, L. Du, C. Zhai, Z. Li, Q. Zhao, Y. Luo, D. Xing, M. Zhang, J. Alloys Compd. 718, 396 (2017)

    Article  Google Scholar 

  60. S. Song, S. Huang, R. Zhang, Z. Chen, T. Wen, S. Wang, T. Hayat, A. Alsaedi, X. Wang, Chem. Eng. J. (Lausanne) 325, 576 (2017)

    Article  Google Scholar 

  61. J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, Y. Xie, Angew. Chem. Int. Ed. 54(25), 7399 (2015)

    Article  Google Scholar 

  62. P.A.W. van der Heide, Q.D. Jiang, Y.S. Kim, J.W. Rabalais, Surf. Sci. 473(1), 59 (2001)

    Article  Google Scholar 

  63. E. Cao, Y. Qin, T. Cui, L. Sun, W. Hao, Y. Zhang, Ceram. Int. 43(10), 7922 (2017)

    Article  Google Scholar 

  64. L.T. Hudson, R.L. Kurtz, S.W. Robey, D. Temple, R.L. Stockbauer, Phys. Rev. B 47(16), 10832 (1993)

    Article  Google Scholar 

  65. Z. Ai, G. Lu, S. Lee, J. Alloys Compd. 613, 260 (2014)

    Article  Google Scholar 

  66. R.E. Tanner, Y. Liang, E.I. Altman, Surf. Sci. 506(3), 251 (2002)

    Article  Google Scholar 

  67. A. Ito, H. Masumoto, T. Goto, Mater. Trans. 47(11), 2808 (2006)

    Article  Google Scholar 

  68. Y. Shi, L. Luo, Y. Zhang, Y. Chen, S. Wang, L. Li, Y. Long, F. Jiang, Ceram. Int. 43(10), 7627 (2017)

    Article  Google Scholar 

  69. J. Wang, W. Jiang, D. Liu, Z. Wei, Y. Zhu, Appl. Catal. B Environ. 176, 306 (2015)

    Article  Google Scholar 

  70. Y. Teng, F. Teng, Electrochim. Acta 244, 1 (2017)

    Article  Google Scholar 

  71. J. Wang, Y. Yu, L. Zhang, Appl. Catal. B Environ. 136, 112 (2013)

    Article  Google Scholar 

  72. Y.I. Jung, D.Y. Yoon, S.J.L. Kang, J. Mater. Res. 24(9), 2949 (2009)

    Article  Google Scholar 

  73. J.G. Fisher, S.-J.L. Kang, Trans. Mater. Res. Soc. Jpn 35(3), 455 (2010)

    Article  Google Scholar 

  74. S.-Y. Chung, D.Y. Yoon, S.-J.L. Kang, Acta Mater. 50(13), 3361 (2002)

    Article  Google Scholar 

  75. B.-K. Yoon, B.-A. Lee, S.-J.L. Kang, Acta Mater. 53(17), 4677 (2005)

    Article  Google Scholar 

  76. K.-S. Oh, J.-Y. Jun, D.-Y. Kim, N.M. Hwang, J. Am. Ceram. Soc. 83(12), 3117 (2000)

    Article  Google Scholar 

  77. S.-J.L. Kang, Y.-I. Jung, S.-H. Jung, J.G. Fisher, in Microstructural Design of Advanced Engineering Materials, ed. by D.A. Molodov (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013), p. 299

  78. W. Jo, D.-Y. Kim, N.-M. Hwang, J. Am. Ceram. Soc. 89(8), 2369 (2006)

    Article  Google Scholar 

  79. K.W. Lay, J. Am. Ceram. Soc. 51(7), 373 (1968)

    Article  Google Scholar 

  80. J.P. Hirth, G.M. Pound, Condensation and Evaporation: Nucleation and Growth Kinetics (Pergamon Press, Oxford, 1963), pp. 77-106

  81. I.V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, (World Scientific, Singapore, 2003), pp. 77-179

  82. S.J.L. Kang, Y.I. Jung, S.H. Jung, J.G. Fisher, in Microstructural Design of Advanced Engineering Materials, ed. by D. A. Molodov. Interface structure-dependent grain growth behavior in polycrystals (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013), p. 299

    Chapter  Google Scholar 

  83. S.D. Peteves, R. Abbaschian, Metall. Trans. A. 22(6), 1259 (1991)

    Article  Google Scholar 

  84. S.D. Peteves, R. Abbaschian, Metall. Trans. A. 22(6), 1271 (1991)

    Article  Google Scholar 

  85. I.V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, (World Scientific, Singapore, 2003), pp. 1-75

  86. S.-Y. Choi, S.-J.L. Kang, Acta Mater. 52(10), 2937 (2004)

    Article  Google Scholar 

  87. H.J.W. Zandvliet, O. Gurlu, B. Poelsema, Phys. Rev. B 64(7), 073402 (2001)

    Article  Google Scholar 

  88. H. van Beijeren, Phys. Rev. Lett. 38(18), 993 (1977)

    Article  Google Scholar 

  89. D.-K. Lee, H. Vu, J.G. Fisher, J. Electroceram. 34(2–3), 150 (2014)

    Google Scholar 

  90. K.L. Merkle, L.J. Thompson, Mater. Lett. 48(3–4), 188 (2001)

    Article  Google Scholar 

  91. S.H. Jung, S.J.L. Kang, Scr. Mater. 82, 49 (2014)

    Article  Google Scholar 

  92. K.-S. Moon, S.-J.L. Kang, J. Am. Ceram. Soc. 91(10), 3191 (2008)

    Article  Google Scholar 

  93. H. Moon, B.-K. Kim, S.-J.L. Kang, Acta Mater. 49(7), 1293 (2001)

    Article  Google Scholar 

  94. C. Rottman, M. Wortis, Phys. Rev. B 29(1), 328 (1984)

    Article  Google Scholar 

  95. C. Rottman, M. Wortis, Phys. Rep. 103(1–4), 59 (1984)

    Article  Google Scholar 

  96. K. Choi, N.M. Hwang, D.-Y. Kim, J. Am. Ceram. Soc. 85(9), 2313 (2002)

    Article  Google Scholar 

  97. W. Jo, N.-M. Hwang, D.-Y. Kim, J. Korean Ceram. Soc. 43(11), 728 (2006)

    Article  Google Scholar 

  98. K.-S. Moon, D. Rout, H.-Y. Lee, S.-J.L. Kang, J. Eur. Ceram. Soc. 31(10), 1915 (2011)

    Article  Google Scholar 

  99. U.C. Oh, Y.S. Chung, D.Y. Kim, D.N. Yoon, J. Am. Ceram. Soc. 71(10), 854 (1988)

    Article  Google Scholar 

  100. D. Jenko, A. Bencan, B. Malic, J. Holc, M. Kosec, Microsc. Microanal. 11(6), 572 (2005)

  101. J.G. Fisher, A. Bencan, M. Kosec, S. Vernay, D. Rytz, J. Am. Ceram. Soc. 91(5), 1503 (2008)

    Article  Google Scholar 

  102. S.-Y. Ko, S.-J.L. Kang, J. Eur. Ceram. Soc. 36(5), 1159 (2016)

    Article  Google Scholar 

  103. J.G. Fisher, S.-J.L. Kang, J. Eur. Ceram. Soc. 29(12), 2581 (2009)

    Article  Google Scholar 

  104. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 98(1), 012902 (2011)

    Article  Google Scholar 

  105. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, S.S. Kim, Appl. Phys. Lett. 96(2), 022901 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (grant no. 2015R1D1A1A01057060). The authors would like to thank Kyeong-Kap Jeong, Ji-Hyeon Lee, Hey-Jeong Kim and Ji-Won Na for operating the XRD, particle size analyser, SEM and XPS respectively, and Kyung-Soon Kim (National Nanofab Center, Daejeon) for operating the EBSD. The authors would also like to thank Zhao Zhiqiang for assistance with the powder annealing and air quenching experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Fisher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, P.G., Jo, GY., Ko, SY. et al. The effect of sintering temperature and time on the growth of single crystals of 0.75 (Na0.5Bi0.5)TiO3–0.25 SrTiO3 by solid state crystal growth. J Electroceram 40, 122–137 (2018). https://doi.org/10.1007/s10832-018-0111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0111-8

Keywords

Navigation