Journal of Electroceramics

, Volume 39, Issue 1–4, pp 223–238 | Cite as

Resistive switching memory using biomaterials

Article

Abstract

Resistive switching memory (ReRAM) is emerging as a developed technology for a new generation of non-volatile memory devices. Natural organic biomaterials are potential elements of environmentally-benign, biocompatible, and biodegradable electronic devices for information storage and resorbable medical implants. Here, we highlight progress in exploiting biomaterials to fabricate a special category of bio-nanoelectronic memories called biodegradable resistive random access memory (bio-ReRAM). Bio-ReRAMs are beneficial because they are non-toxic and environmentally benign. Various types of biomaterials with their chemical compound, bio-ReRAM device design and structure, their relevance resistive switching (RS) behavior, and conduction mechanism are considered in detail. Particularly, we report physically-transient devices, their corresponding switching mechanism, and their dissolution by immersion in water. Finally, we review recent progress in the development of various types of flexible bio-ReRAMs, focusing on their flexibility and reliability as bendable nanoelectronics. Because most of these devices are candidates to become wearable, skin-compatible, and even digestible smart electronics, we discuss the future improvement of natural materials and the perspective of novel bio-ReRAMs.

Keywords

Switching mechanism Biomaterials Resistance change Biodegradable Biocompatible 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2016M3D1A1027663 and NRF-2015R1A2A1A15055918). This work was also supported by the Future Semiconductor Device Technology Development Program (10045226) funded by the Ministry of Trade, Industry & Energy (MOTIE)/Korea Semiconductor Research Consortium (KSRC). In addition, this work was partially supported by the Brain Korea 21 PLUS project (Center for Creative Industrial Materials).

References

  1. 1.
    B. Zhu, H. Wang, W. Leow, Y. Cai, X. Loh, M. Han, X. Chen, Silk Fibroin for Flexible Electronic Devices. Adv. Mater. (Deerfield Beach, Fla) 28(22), 4250–4265 (2016)CrossRefGoogle Scholar
  2. 2.
    S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986), 911–918 (2004)CrossRefGoogle Scholar
  3. 3.
    D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008)CrossRefGoogle Scholar
  4. 4.
    Q.-D. Ling, D.-J. Liaw, C. Zhu, D.S.-H. Chan, E.-T. Kang, K.-G. Neoh, Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 33(10), 917–978 (2008)CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, S.-T. Han, Y. Yan, L. Zhou, L.-B. Huang, J. Zhuang, P. Sonar, V. Roy, Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends. Sci. Rep. 5, 10683 (2015)Google Scholar
  6. 6.
    H. Tao, D.L. Kaplan, F.G. Omenetto, Silk materials–a road to sustainable high technology. Adv. Mater. 24(21), 2824–2837 (2012)CrossRefGoogle Scholar
  7. 7.
    D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)CrossRefGoogle Scholar
  8. 8.
    S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M.A. Brenckle, B. Panilaitis, S.M. Won, Y.-S. Kim, A physically transient form of silicon electronics. Science 337(6102), 1640–1644 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Wang, F. Meng, B. Zhu, W.R. Leow, Y. Liu, X. Chen, Resistive switching memory devices based on proteins. Adv. Mater. 27(46), 7670–7676 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J.W. Fergus, Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069–4076 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Irimia-Vladu, E.D. Głowacki, G. Voss, S. Bauer, N.S. Sariciftci, Green and biodegradable electronics. Mater. Today 15(7), 340–346 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.-W. Kwon, C.H. Lee, D.-H. Choi, J.-I. Jin, Materials science of DNA. J. Mater. Chem. 19(10), 1353–1380 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21 (25-26), 2632–2663 (2009)Google Scholar
  14. 14.
    N.R. Hosseini, J.S. Lee, Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 25(35), 5586–5592 (2015)CrossRefGoogle Scholar
  15. 15.
    N. Raeis-Hosseini, J.-S. Lee, Controlling the resistive switching behavior in starch-based flexible Biomemristors. ACS Appl Mater Interfaces 8(11), 7326–7332 (2016)CrossRefGoogle Scholar
  16. 16.
    H.N. Raeis, J. Lee, Resistive switching memory based on bioinspired natural solid polymer electrolytes. ACS Nano 9(1), 419–426 (2015)CrossRefGoogle Scholar
  17. 17.
    K. Nagashima, H. Koga, U. Celano, F. Zhuge, M. Kanai, S. Rahong, G. Meng, Y. He, J. De Boeck, M. Jurczak, Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci Rep 4, 5532 (2014)Google Scholar
  18. 18.
    Y.-C. Hung, W.-T. Hsu, T.-Y. Lin, L. Fruk, Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Appl Phys Lett 99(25), 253301 (2011)CrossRefGoogle Scholar
  19. 19.
    Y.-C. Chang, Y.-H. Wang, Resistive switching behavior in gelatin thin films for nonvolatile memory application. ACS Appl Mater Interfaces 6(8), 5413–5421 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.-C. Chen, H.-C. Yu, C.-Y. Huang, W.-L. Chung, S.-L. Wu, Y.-K. Su, Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film. Sci. Rep. 5, 10022 (2015)Google Scholar
  21. 21.
    X. He, J. Zhang, W. Wang, W. Xuan, X. Wang, Q. Zhang, C.G. Smith, J. Luo, Transient resistive switching devices made from egg albumen dielectrics and dissolvable electrodes. ACS Appl Mater Interfaces 8(17), 10954–10960 (2016)CrossRefGoogle Scholar
  22. 22.
    M.K. Hota, M.K. Bera, B. Kundu, S.C. Kundu, C.K. Maiti, A natural silk fibroin protein-based transparent bio-Memristor. Adv Funct Mater 22(21), 4493–4499 (2012)CrossRefGoogle Scholar
  23. 23.
    C. Mukherjee, M. Hota, D. Naskar, S. Kundu, C. Maiti, Resistive switching in natural silk fibroin protein-based bio-memristors. Phys Status Solidi A 210(9), 1797–1805 (2013)Google Scholar
  24. 24.
    B. Sun, D. Liang, X. Li, P. Chen, Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk. J Mater Sci Mater Electron 27(4), 3957–3962 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Wang, B. Zhu, X. Ma, Y. Hao, X. Chen, Physically transient resistive switching memory based on silk protein. Small 12(20), 2715–2719 (2016)CrossRefGoogle Scholar
  26. 26.
    F. Meng, L. Jiang, K. Zheng, C.F. Goh, S. Lim, H.H. Hng, J. Ma, F. Boey, X. Chen, Protein-Based Memristive Nanodevices. Small 7(21), 3016–3020 (2011)CrossRefGoogle Scholar
  27. 27.
    Z.X. Lim, K.Y. Cheong, Effects of drying temperature and ethanol concentration on bipolar switching characteristics of natural Aloe Vera-based memory devices. Phys Chem Chem Phys 17(40), 26833–26853 (2015)CrossRefGoogle Scholar
  28. 28.
    I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnol 22(25), 254003 (2011)Google Scholar
  29. 29.
    H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal–oxide RRAM. Proc IEEE 100(6), 1951–1970 (2012)CrossRefGoogle Scholar
  30. 30.
    A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, Nanoscale cation motion in TaOx HfOx and TiOx memristive systems. Natl Nanotechnol 11(1), 67–74 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Lübben, P. Karakolis, V. Ioannou-Sougleridis, P. Normand, P. Dimitrakis, I. Valov, Graphene-modified Interface controls transition from VCM to ECM switching modes in ta/TaOx based Memristive devices. Adv Mater 27(40), 6202–6207 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Akinaga, H. Shima, Resistive random access memory (ReRAM) based on metal oxides. Proc IEEE 98(12), 2237–2251 (2010)CrossRefGoogle Scholar
  33. 33.
    H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Sericin for resistance switching device with multilevel nonvolatile memory. Adv Mater 25(38), 5498–5503 (2013)CrossRefGoogle Scholar
  34. 34.
    C. Tan, Z. Liu, W. Huang, H. Zhang, Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev 44(9), 2615–2628 (2015)CrossRefGoogle Scholar
  35. 35.
    C. Muthu, S. Agarwal, A. Vijayan, P. Hazra, K.B. Jinesh, V.C. Nair, Hybrid Perovskite Nanoparticles for High-Performance Resistive Random Access Memory Devices: Control of Operational Parameters through Chloride Doping. Adv Mater Interfaces 3(18), 1600092 (2016)Google Scholar
  36. 36.
    J.-W. Lee, W.-J. Cho, Fabrication of resistive switching memory based on solution processed PMMA-HfO x blended thin films. Semicond Sci Technol 32(2), 025009 (2017)CrossRefGoogle Scholar
  37. 37.
    D.I. Son, T.W. Kim, J.H. Shim, J.H. Jung, D.U. Lee, J.M. Lee, W.I. Park, W.K. Choi, Flexible organic bistable devices based on graphene embedded in an insulating poly (methyl methacrylate) polymer layer. Nano Lett 10(7), 2441–2447 (2010)CrossRefGoogle Scholar
  38. 38.
    H. Wang, Y. Du, Y. Li, B. Zhu, W.R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Configurable Resistive Switching between Memory and Threshold Characteristics for Protein-Based Devices. Adv. Funct. Mater. 25 (25), 3825-3831 (2015)Google Scholar
  39. 39.
    V.L. Finkenstadt, Natural polysaccharides as electroactive polymers. Appl Microbiol Biotechnol 67(6), 735–745 (2005)CrossRefGoogle Scholar
  40. 40.
    Y. Wan, B. Peppley, K.A. Creber, V.T. Bui, E. Halliop, Preliminary evaluation of an alkaline chitosan-based membrane fuel cell. J Power Sources 162(1), 105–113 (2006)CrossRefGoogle Scholar
  41. 41.
    L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014)Google Scholar
  42. 42.
    C. Zhong, Y. Deng, A.F. Roudsari, A. Kapetanovic, M. Anantram, M. Rolandi, A polysaccharide bioprotonic field-effect transistor. Nat Commun 2, 476 (2011)CrossRefGoogle Scholar
  43. 43.
    E. Guibal, Interactions of metal ions with chitosan-based sorbents: A review. Sep Purif Technol 38(1), 43–74 (2004)CrossRefGoogle Scholar
  44. 44.
    C.-W. Liew, S. Ramesh, K. Ramesh, A. Arof, Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16(5), 1869–1875 (2012)CrossRefGoogle Scholar
  45. 45.
    A. Smits, P. Kruiskamp, J. Van Soest, J. Vliegenthart, Interaction between dry starch and plasticisers glycerol or ethylene glycol, measured by differential scanning calorimetry and solid state NMR spectroscopy. Carbohydr Polym 53(4), 409–416 (2003)CrossRefGoogle Scholar
  46. 46.
    M. Kumar, T. Tiwari, N. Srivastava, Electrical transport behaviour of bio-polymer electrolyte system: Potato starch+ ammonium iodide. Carbohydr Polym 88(1), 54–60 (2012)CrossRefGoogle Scholar
  47. 47.
    V. Finkenstadt, J. Willett, Electroactive materials composed of starch. J Polym Environ 12(2), 43–46 (2004)CrossRefGoogle Scholar
  48. 48.
    D. Topgaard, O. Söderman, Self-diffusion in two-and three-dimensional powders of anisotropic domains: An NMR study of the diffusion of water in cellulose and starch. J Phys Chem B 106(46), 11887–11892 (2002)CrossRefGoogle Scholar
  49. 49.
    S. Santacruz, C. Rivadeneira, M. Castro, Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant's hydrophobic tail and mechanical treatment. Food Hydrocoll 49, 89–94 (2015)CrossRefGoogle Scholar
  50. 50.
    B. Cho, S. Song, Y. Ji, T.W. Kim, T. Lee, Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv Funct Mater 21(15), 2806–2829 (2011)CrossRefGoogle Scholar
  51. 51.
    B. Zeng, D. Xu, M. Tang, Y. Xiao, Y. Zhou, R. Xiong, Z. Li, Y. Zhou, Improvement of resistive switching performances via an amorphous ZrO2 layer formation in TiO2-based forming-free resistive random access memory. J Appl Phys 116(12), 124514 (2014)CrossRefGoogle Scholar
  52. 52.
    S. Mondal, J.-L. Her, F.-H. Chen, S.-J. Shih, T.-M. Pan, Improved resistance switching characteristics in Ti-doped for resistive nonvolatile memory devices. Elect Device Lett, IEEE 33(7), 1069–1071 (2012)CrossRefGoogle Scholar
  53. 53.
    P. Feng, C. Chao, Z.-s. Wang, Y.-c. Yang, Y. Jing, Z. Fei, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Progress Natl Sci: Mater Intern 20, 1–15 (2010)CrossRefGoogle Scholar
  54. 54.
    D. Shang, Q. Wang, L. Chen, R. Dong, X. Li, W. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag∕ La 0.7 Ca 0.3 MnO 3∕ Pt heterostructures. Phys Rev B 73(24), 245427 (2006)CrossRefGoogle Scholar
  55. 55.
    S. Chithiravel, K. Krishnamoorthy, S. Asha, Structure-Property Relationship in Charge Transporting Behaviour of Room Temperature Liquid Crystalline Perylenebisimides. J. Mater. Chem. C, (46), 9882-91 (2014)Google Scholar
  56. 56.
    Y.H. Liu, L.Q. Zhu, P. Feng, Y. Shi, Q. Wan, Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater 27(37), 5599–5604 (2015)CrossRefGoogle Scholar
  57. 57.
    K.M. Dang, R. Yoksan, Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115, 575–581 (2015)CrossRefGoogle Scholar
  58. 58.
    L. Pender, R. Fleming, Memory switching in glow discharge polymerized thin films. J Appl Phys 46(8), 3426–3431 (1975)CrossRefGoogle Scholar
  59. 59.
    A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Foldable printed circuit boards on paper substrates. Adv Funct Mater 20(1), 28–35 (2010)CrossRefGoogle Scholar
  60. 60.
    M. Nogi, H. Yano, Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10), 1849–1852 (2008)CrossRefGoogle Scholar
  61. 61.
    W.J. Hyun, O.O. Park, B.D. Chin, Foldable graphene electronic circuits based on paper substrates. Adv Mater 25(34), 4729–4734 (2013)CrossRefGoogle Scholar
  62. 62.
    M. Nogi, N. Komoda, K. Otsuka, K. Suganuma, Foldable nanopaper antennas for origami electronics. Nano 5(10), 4395–4399 (2013)Google Scholar
  63. 63.
    Y.-S. Chen, M.-Y. Hong, G.S. Huang, A protein transistor made of an antibody molecule and two gold nanoparticles. Nat Nanotechnol 7(3), 197–203 (2012)CrossRefGoogle Scholar
  64. 64.
    G. Wu, P. Feng, X. Wan, L. Zhu, Y. Shi, Q. Wan, Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors. Sci. Rep. 6, 23578 (2016)Google Scholar
  65. 65.
    B.J. Klotz, D. Gawlitta, A.J. Rosenberg, J. Malda, F.P. Melchels, Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends Biotechnol 34(5), 394–407 (2016)CrossRefGoogle Scholar
  66. 66.
    R. Soliva-Fortuny, A. Balasa, D. Knorr, O. Martín-Belloso, Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends Food Sci Technol 20(11), 544–556 (2009)CrossRefGoogle Scholar
  67. 67.
    J.W. Chang, C.G. Wang, C.Y. Huang, T.D. Tsai, T.F. Guo, T.C. Wen, Chicken albumen dielectrics in organic field-effect transistors. Adv Mater 23(35), 4077–4081 (2011)CrossRefGoogle Scholar
  68. 68.
    S.-J. Kim, D.-B. Jeon, J.-H. Park, M.-K. Ryu, J.-H. Yang, C.-S. Hwang, G.-H. Kim, S.-M. Yoon, Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide Semiconductor Channel on eco-friendly paper substrate. ACS Appl Mater Interfaces 7(8), 4869–4874 (2015)CrossRefGoogle Scholar
  69. 69.
    B. Yurke, A.J. Turberfield, A.P. Mills, F.C. Simmel, J.L. Neumann, A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRefGoogle Scholar
  70. 70.
    J.A. Hagen, W. Li, A. Steckl, J. Grote, Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl Phys Lett 88(17), 171109, 2006Google Scholar
  71. 71.
    S. Qin, R. Dong, X. Yan, Q. Du, A reproducible write–(read) n–erase and multilevel bio-memristor based on DNA molecule. Org. Electron., 22, 147-153 (2015)Google Scholar
  72. 72.
    E. Gale, D. Pearson, S. Kitson, A. Adamatzky, B. de Lacy Costello, The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater. Chem. Phys., 162 20-30 (2015)Google Scholar
  73. 73.
    K.J. Waldron, J.C. Rutherford, D. Ford, N.J. Robinson, Metalloproteins and metal sensing. Nature, 460 (7257), 823-830 (2009)Google Scholar
  74. 74.
    I. Yamashita, K. Iwahori, S. Kumagai, Ferritin in the field of nanodevices. Biochim. Biophys Acta (BBA)-General Subjects, 1800 (8), 846-857 (2010)Google Scholar
  75. 75.
    F. Meng, B. Sana, Y. Li, Y. Liu, S. Lim, X. Chen, Bioengineered tunable memristor based on protein nanocage. Small, 10 (2), 277-283 (2014)Google Scholar
  76. 76.
    S. Takeda, H. Yoshimura, S. Endo, T. Takahashi, K. Nagayama, Control of crystal forms of apoferritin by site-directed mutagenesis. Proteins: Structure, Function, and Bioinformatics, 23 (4), 548-556 (1995)Google Scholar
  77. 77.
    C. Zhang, J. Shang, W. Xue, H. Tan, L. Pan, X. Yang, S. Guo, J. Hao, G. Liu, R.-W. Li, Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem Commun. 52(26), 4828-4831 (2016)Google Scholar
  78. 78.
    B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh, M.Y. Han, X. Chen, Silk fibroin for flexible electronic devices. J. Adv. Mater. 28(22), 4250-65 (2015)Google Scholar
  79. 79.
    Y.-Q. Zhang, Applications of natural silk protein sericin in biomaterials. Biotechnol Adv. 20(2), 91-100 (2002)Google Scholar
  80. 80.
    C. Jiang, X. Wang, R. Gunawidjaja, Y.H. Lin, M.K. Gupta, D.L. Kaplan, R.R. Naik, V.V. Tsukruk, Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 17(13), 2229-2237 (2007)Google Scholar
  81. 81.
    S.W. Hwang, S.K. Kang, X. Huang, M.A. Brenckle, F.G. Omenetto, J. Rogers, Materials for programmed, functional transformation in transient electronic systems. Adv. Mater. 27(1), 47-52 (2015)Google Scholar
  82. 82.
    R.M. Touyz, Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Phys Heart Circ Phys. 294 (3), H1103-H1118 (2008)Google Scholar
  83. 83.
    D.N. Rockwood, R.C. Preda, T. Yücel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nature protocols. 6(10), 1612-1631 (2011)Google Scholar
  84. 84.
    Y. Ji, D.F. Zeigler, D.S. Lee, H. Choi, A.K.-Y. Jen, H.C. Ko, T.-W. Kim, Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nature Commun, 4, 2707 (2013)Google Scholar
  85. 85.
    M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A. Egbe, M.C. Miron, Ultrathin, highly flexible and stretchable PLEDs. Nature Photonics. 7(10), 811-816 (2013)Google Scholar
  86. 86.
    M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, An ultra-lightweight design for imperceptible plastic electronics. Nature. 499(7459), 458-463 (2013)Google Scholar
  87. 87.
    M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nature Commun. 3, 770 (2012)Google Scholar
  88. 88.
    S.-K. Kang, R.K. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Bioresorbable silicon electronic sensors for the brain. Nature. 530(7588), 71-76 (2016)Google Scholar
  89. 89.
    Y. Cai, J. Tan, L. YeFan, M. Lin, R. Huang, A flexible organic resistance memory device for wearable biomedical applications. Nanotechnol. 27(27), 275206 (2016)Google Scholar
  90. 90.
    B. Hu, X. Zhu, X. Chen, L. Pan, S. Peng, Y. Wu, J. Shang, G. Liu, Q. Yan, R.-W. Li, A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J. Am. Chem. Soc. 134 (42), 17408-17411 (2012)Google Scholar
  91. 91.
    S.-Y. Wang, D.-Y. Lee, T.-Y. Huang, J.-W. Wu, T.-Y. Tseng, Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer. Nanotechnol, 21 (49), 495201 (2010)Google Scholar
  92. 92.
    S. Gao, F. Zeng, C. Chen, G. Tang, Y. Lin, Z. Zheng, C. Song, F. Pan, Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology. 24(33), 335201 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea

Personalised recommendations