Advertisement

Journal of Electroceramics

, Volume 39, Issue 1–4, pp 39–60 | Cite as

Modeling resistive switching materials and devices across scales

  • Stefano Ambrogio
  • Blanka Magyari-Köpe
  • Nicolas Onofrio
  • Md Mahbubul Islam
  • Dan Duncan
  • Yoshio Nishi
  • Alejandro Strachan
Article

Abstract

Resistance switching devices based on electrochemical processes have attractive significant attention in the field of nanoelectronics due to the possibility of switching in nanosecond timescales, miniaturization to tens of nanometer and multi-bit storage. Their deceptively simple structures (metal-insulator-metal stack) hide a set of complex, coupled, processes that govern their operation, from electrochemical reactions at interfaces, diffusion and aggregation of ionic species, to electron and hole trapping and Joule heating. A combination of experiments and modeling efforts are contributing to a fundamental understanding of these devices, and progress towards a predictive understanding of their operation is opening the possibility for the rational optimization. In this paper we review recent progress in modeling resistive switching devices at multiple scales; we briefly describe simulation tools appropriate at each scale and the key insight that has been derived from them. Starting with ab initio electronic structure simulations that provide an understanding of the mechanisms of operation of valence change devices pointing to the importance of the aggregation of oxygen vacancies in resistance switching and how dopants affect performance. At slightly larger scales we describe reactive molecular dynamics simulations of the operation of electrochemical metallization cells. Here the dynamical simulations provide an atomic picture of the mechanisms behind the electrochemical formation and stabilization of conductive metallic filaments that provide a low-resistance path for electronic conduction. Kinetic Monte Carlo simulations are one step higher in the multiscale ladder and enable larger scale simulations and longer times, enabling, for example, the study of variability in switching speed and resistance. Finally, we discuss physics-based simulations that accurately capture subtleties of device behavior and that can be incorporated in circuit simulations.

Keywords

Resistive switching Valence change memory Electrochemical metallization cells Reactive molecular dynamics EChemDID 

Notes

Acknowledgments

AS acknowledges support from the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. AS, NO and MI acknowledge support for computational facilities from Purdue University, the Center for Predictive Materials and Devices and the Network for Computational Nanotechnology. BMK, DD and YN acknowledges funding from the Stanford Non-Volatile Memory Technology Research Initiative Center and the calculations were carried out using computational resources awarded on the NSF funded XSEDE computational project and on the Carbon cluster at the Center for Nanoscale Materials supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

References

  1. 1.
    R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833 (2007)CrossRefGoogle Scholar
  2. 2.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature. 521(7550), 61 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25-26), 2632 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Padilla, G.W. Burr, R.S. Shenoy, K.V. Raman, D.S. Bethune, R.M. Shelby, C.T. Rettner, J. Mohammad, K. Virwani, P. Narayanan, et al., On the origin of steep–nonlinearity in mixed-ionic-electronic-conduction-based access devices. IEEE Trans. Electron Devices. 62(3), 963 (2015)CrossRefGoogle Scholar
  6. 6.
    Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9(4), 1636 (2009)CrossRefGoogle Scholar
  7. 7.
    V. Zhirnov, R. Meade, R.K. Cavin, G. Sandhu, Scaling limits of resistive memories. Nanotechnology. 22(25), 254027 (2011)CrossRefGoogle Scholar
  8. 8.
    H.S.P. Wong, S. Salahuddin, Memory leads the way to better computing. Nat. Nanotechnol. 10(3), 191 (2015)CrossRefGoogle Scholar
  9. 9.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13 (2013)CrossRefGoogle Scholar
  10. 10.
    I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories – fundamentals, applications, prospects. Nanotechnology. 22(25), 254003 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5(4), 312 (2006)CrossRefGoogle Scholar
  12. 12.
    J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology. 20(21), 215201 (2009)CrossRefGoogle Scholar
  13. 13.
    B. Magyari-Köpe, M. Tendulkar, S.G. Park, H.D. Lee, Y. Nishi, Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3. Nanotechnology. 22(25), 254029 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Wedig, M. Luebben, D.Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, et al., Nanoscale cation motion in taox, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11(1), 67 (2016)CrossRefGoogle Scholar
  15. 15.
    S.G. Park, B. Magyari-Köpe, Y. Nishi, Impact of oxygen vacancy ordering on the formation of a conductive filament in for resistive switching memory. IEEE Electron Device Lett. 32(2), 197 (2011)CrossRefGoogle Scholar
  16. 16.
    K. Kamiya, M.Y. Yang, B. Magyari-Köpe, M. Niwa, Y. Nishi, K. Shiraishi, in Physics in designing desirable reRAM stack structure – atomistic recipes based on oxygen chemical potential control and charge injection/removal. in IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2012), p. 2012Google Scholar
  17. 17.
    K.H. Xue, B. Traore, P. Blaise, L.R.C. Fonseca, E. Vianello, G. Molas, B. De Salvo, G. Ghibaudo, B. Magyari-Köpe, Y. Nishi, A combined ab initio and experimental study on the nature of conductive filaments in resistive random access memory. IEEE Trans. Electron Devices. 61(5), 1394 (2014)CrossRefGoogle Scholar
  18. 18.
    C. Schindler, G. Staikov, R. Waser, Electrode kinetics of Cu-SiO2-based resistive switching cells Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94(7), 2109 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Tappertzhofen, H. Mündelein, I. Valov, R. Waser, Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. Nanoscale. 4(10), 3040 (2012)CrossRefGoogle Scholar
  20. 20.
    C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices. 54(10), 2762 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)CrossRefGoogle Scholar
  22. 22.
    I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11(6), 530 (2012)CrossRefGoogle Scholar
  23. 23.
    W.A. Hubbard, A. Kerelsky, G. Jasmin, E.R. White, J. Lodico, M. Mecklenburg, B.C. Regan, Nanofilament formation and regeneration during Cu/Al2 O 3 resistive memory switching. Nano Lett. 15(6), 3983 (2015)CrossRefGoogle Scholar
  24. 24.
    P.A.M. Dirac, in Quantum mechanics of many-electron systems. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 123 (The Royal Society, 1929), p. 714Google Scholar
  25. 25.
    J.J. de Pablo, W.A. Curtin, Multiscale modeling in advanced materials research: Challenges, novel methods, and emerging applications. MRS Bull. 32(11), 905 (2007)Google Scholar
  26. 26.
    K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, et al, Reproducibility in density functional theory calculations of solids. Science. 351(6280), 3000 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Shekhar, K. Nomura, R.K. Kalia, A. Nakano, P. Vashishta, Nanobubble collapse on a silica surface in water: Billion-atom reactive molecular dynamics simulations. Phys. Rev. Lett. 111(18), 184503 (2013)CrossRefGoogle Scholar
  28. 28.
    A. M. Cuitiño, L. Stainier, G. Wang, A. Strachan, T Ċaġin, W.A. Goddard, M. Ortiz, A multiscale approach for modeling crystalline solids. J. Computer-Aided Mater. Des. 8(2-3), 127 (2001)CrossRefGoogle Scholar
  29. 29.
    M. Koslowski, A. Strachan, Uncertainty propagation in a multiscale model of nanocrystalline plasticity. Reliab. Eng. Syst. Saf. 96(9), 1161 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Ortiz, A.M. Cuitino, J. Knap, M. Koslowski, Mixed atomistic–continuum models of material behavior The art of transcending atomistics and informing continua. MRS Bull. 26(03), 216 (2001)CrossRefGoogle Scholar
  31. 31.
    W.A. Curtin, R.E. Miller, Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11(3), R33 (2003)CrossRefGoogle Scholar
  32. 32.
    J. Guo, S. Datta, M. Lundstrom, M.P. Anantam, Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2(2) (2004)Google Scholar
  33. 33.
    R.P. Vedula, S. Palit, M.A. Alam, A. Strachan, Role of atomic variability in dielectric charging: A first-principles-based multiscale modeling study. Phys. Rev. B. 88(20), 205204 (2013)CrossRefGoogle Scholar
  34. 34.
    R.A. Austin, N.R. Barton, J.E. Reaugh, L.E. Fried, Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal. J. Appl. Phys. 117(18), 185902 (2015)CrossRefGoogle Scholar
  35. 35.
    L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Evidences of oxygen-mediated resistive-switching mechanism in TiN ∖ HfO2∖ Pt cells. Appl. Phys. Lett. 97(24), 243509 (2010)CrossRefGoogle Scholar
  36. 36.
    K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K.P. Biju, J. Kong, K. Lee, et al, Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology. 22(25), 254023 (2011)CrossRefGoogle Scholar
  37. 37.
    J. Song, D. Lee, J. Woo, Y. Koo, E. Cha, S. Lee, J. Park, K. Moon, S.H. Misha, A. Prakash, et al., Effects of reset current overshoot and resistance state on reliability of RRAM. IEEE Electron Device Lett. 35(6), 636 (2014)CrossRefGoogle Scholar
  38. 38.
    O. Kavehei, E. Linn, L. Nielen, S. Tappertzhofen, E. Skafidas, I. Valov, R. Waser, An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing. Nanoscale. 5(11), 5119 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Yu, H.S.P. Wong, in Characterization and modeling of the conduction and switching mechanisms of HfOx based RRAM. in MRS Proceedings, Vol. 1631 (Cambridge Univ Press, Cambridge, 2014)Google Scholar
  40. 40.
    L. Zhang, A. Redolfi, C. Adelmann, S. Clima, I.P. Radu, Y.Y. Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, B. Govoreanu, Ultrathin metal/amorphous-silicon/metal diode for bipolar RRAM selector applications. IEEE Electron Device Lett. 35(2), 199 (2014)CrossRefGoogle Scholar
  41. 41.
    B. Magyari-Köpe, Y. Nishi, Resistive memories. Intelligent Integrated Systems: Devices, Technologies, and Architectures, ed. by S. Deleonibus, Pan Stanford Series on Intelligent Nanosystems, vol. 1, p. 325 (2014)Google Scholar
  42. 42.
    S.G. Park, B. Magyari-Köpe, Y. Nishi, Electronic correlation effects in reduced rutile TiO2 within the LDA+U method. Phys. Rev. B. 82(11), 115109 (2010)CrossRefGoogle Scholar
  43. 43.
    S.G. Park, B. Magyari-Köpe, Y. Nishi, in Theoretical study of the resistance switching mechanism in rutile TiO2−x for ReRAM: the role of oxygen vacancies and hydrogen impurities. in 2011 IEEE Symposium on VLSI Technology-Digest of Technical Papers, (2011)Google Scholar
  44. 44.
    L. Zhao, S.G. Park, B. Magyari-Köpe, Y. Nishi, Dopant selection rules for desired electronic structure and vacancy formation characteristics of TiO2 resistive memory. Appl. Phys. Lett. 102(8), 083506 (2013)CrossRefGoogle Scholar
  45. 45.
    L. Zhao, S.G. Park, B. Magyari-Köpe, Y. Nishi, First principles modeling of charged oxygen vacancy filaments in reduced TiO2–implications to the operation of non-volatile memory devices. Math. Comput. Model. 58(1), 275 (2013)CrossRefGoogle Scholar
  46. 46.
    K. Kamiya, M.Y. Yang, S.G. Park, B. Magyari-Köpe, Y. Nishi, M. Niwa, K. Shiraishi, ON-OFF switching mechanism of resistive–random–access–memories based on the formation and disruption of oxygen vacancy conducting channels. Appl. Phys. Lett. 100(7), 073502 (2012)CrossRefGoogle Scholar
  47. 47.
    K. Kamiya, M.Y. Yang, T. Nagata, S.G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, K. Shiraishi, Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories. Phys. Rev. B. 87(15), 155201 (2013)CrossRefGoogle Scholar
  48. 48.
    D. Duncan, B. Magyari-Köpe, Y. Nishi, Hydrogen doping in HfO2 resistance change random access memory. Appl. Phys. Lett. 108(4), 043501 (2016)CrossRefGoogle Scholar
  49. 49.
    D. Duncan, B. Magyari-Köpe, Y. Nishi, Filament-induced anisotropic oxygen vacancy diffusion and charge trapping effects in hafnium oxide RRAM. IEEE Electron Device Lett. 37(4), 400 (2016)CrossRefGoogle Scholar
  50. 50.
    S.R. Bradley, A.L. Shluger, G. Bersuker, Electron-injection-assisted generation of oxygen vacancies in monoclinic HfO2. Phys. Rev. Appl. 4(6), 064008 (2015)CrossRefGoogle Scholar
  51. 51.
    S.R. Bradley, G. Bersuker, A.L. Shluger, Modelling of oxygen vacancy aggregates in monoclinic HfO2: Can they contribute to conductive filament formation? J. Phys. Condens. Matter. 27(41), 415401 (2015)CrossRefGoogle Scholar
  52. 52.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)CrossRefGoogle Scholar
  53. 53.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (4A), A1133 (1965)CrossRefGoogle Scholar
  54. 54.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+u study. Phys. Rev. B. 57(3), 1505 (1998)CrossRefGoogle Scholar
  55. 55.
    T.T. Jiang, Q.Q. Sun, Y. Li, J.J. Guo, P. Zhou, S.J. Ding, D.W. Zhang, Towards the accurate electronic structure descriptions of typical high-constant dielectrics. J. Phys. D: Appl. Phys. 44(18), 185402 (2011)CrossRefGoogle Scholar
  56. 56.
    M. Jain, J.R. Chelikowsky, S.G. Louie, Quasiparticle excitations and charge transition levels of oxygen vacancies in hafnia. Phys. Rev. Lett. 107(21), 216803 (2011)CrossRefGoogle Scholar
  57. 57.
    S.J. Clark, L. Lin, J. Robertson, On the identification of the oxygen vacancy in HfO2. Microelectron. Eng. 88(7), 1464 (2011)CrossRefGoogle Scholar
  58. 58.
    K.H. Xue, L.R.C. Blaise, P. Fonseca, G. Molas, E. Vianello, B. Traore, B. De Salvo, G. Ghibaudo, Y. Nishi, Grain boundary composition and conduction in HfO2: An ab initio study. Appl. Phys. Lett. 102(20), 201908 (2013)CrossRefGoogle Scholar
  59. 59.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54(16), 11169 (1996)CrossRefGoogle Scholar
  60. 60.
    E.P. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50(24), 17953 (1994)CrossRefGoogle Scholar
  61. 61.
    B. Xiao, S. Watanabe, Interface structure in Cu/Ta2 O 5/Pt resistance switch A first-principles study. ACS Appl. Mater. Interfaces. 7(1), 519 (2015)CrossRefGoogle Scholar
  62. 62.
    A. O’Hara, G. Bersuker, A.A. Demkov, Assessing hafnium on hafnia as an oxygen getter. J. Appl. Phys. 115(18), 183703 (2014)CrossRefGoogle Scholar
  63. 63.
    L. Zhao, S. Clima, B. Magyari-Köpe, M. Jurczak, Y. Nishi, Ab initio modeling of oxygen-vacancy formation in doped-HfOx RRAM: Effects of oxide phases, stoichiometry, and dopant concentrations. Appl. Phys. Lett. 107(1), 013504 (2015)CrossRefGoogle Scholar
  64. 64.
    D. Ning, P. Hua, W. Wei, Effects of different dopants on switching behavior of HfO2-based resistive random access memory. Chin. Phys. B. 23(10), 107306 (2014)CrossRefGoogle Scholar
  65. 65.
    Y.S. Chen, B. Chen, B. Gao, L.F. Liu, X.Y. Liu, J.F. Kang, Well controlled multiple resistive switching states in the Al local doped HfO2 resistive random access memory device. J. Appl. Phys. 113(16), 164507 (2013)CrossRefGoogle Scholar
  66. 66.
    L. Goux, J.Y. Kim, B. Magyari-Köpe, Y. Nishi, A. Redolfi, M. Jurczak, H-treatment impact on conductive-filament formation and stability in Ta2 O 5-based resistive-switching memory cells. J. Appl. Phys. 117(12), 124501 (2015)CrossRefGoogle Scholar
  67. 67.
    Z. Yuanyang, W. Jiayu, X. Jianbin, Y. Fei, L. Qi, D. Yuehua, Metal dopants in HfO2–based RRAM: first principle study. J. Semicond. 35(4), 042002 (2014)CrossRefGoogle Scholar
  68. 68.
    B. Gao, H.W. Zhang, S. Yu, B. Sun, L.F. Liu, X.Y. Liu, Y. Wang, R.Q. Han, J.F. Kang, B. Yu, et al, in Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology. in 2009 IEEE Symposium on VLSI Technology-Digest of Technical Papers, Vol. 30 (IEEE, 2009)Google Scholar
  69. 69.
    C.S. Peng, W.Y. Chang, Y.H. Lee, M.H. Lin, F. Chen, M.J. Tsai, Improvement of resistive switching stability of HfO2 films with Al doping by atomic layer deposition. Electrochem. Solid-State Lett. 15(4), H88 (2012)CrossRefGoogle Scholar
  70. 70.
    Z. Wang, W.G. Zhu, A.Y. Du, L. Wu, Z. Fang, X.A. Tran, W.J. Liu, K.L. Zhang, H.Y. Yu, Highly uniform, self-compliance, and forming-free ALD-based RRAM with Ge doping. IEEE Trans. Electron Devices. 59(4), 1203 (2012)CrossRefGoogle Scholar
  71. 71.
    D. Panda, C.Y. Huang, T.Y. Tseng, Resistive switching characteristics of nickel silicide layer embedded HfO2 film. Appl. Phys. Lett. 100(11), 112901 (2012)CrossRefGoogle Scholar
  72. 72.
    S. Kim, D. Lee, J. Park, S. Jung, W. Lee, J. Shin, J. Woo, G. Choi, H. Hwang, Defect engineering: reduction effect of hydrogen atom impurities in HfO2-based resistive-switching memory devices. Nanotechnology. 23(32), 325702 (2012)CrossRefGoogle Scholar
  73. 73.
    H. Xie, Q. Liu, Y. Li, H. Lv, M. Wang, X. Liu, H. Sun, X. Yang, S. Long, S. Liu, et al., Nitrogen-induced improvement of resistive switching uniformity in a HfO2-based RRAM device. Semicond. Sci. Technol. 27(12), 125008 (2012)CrossRefGoogle Scholar
  74. 74.
    G. Palma, E. Vianello, O. Thomas, H. Oucheikh, S. Onkaraiah, A. Toffoli, C. Carabasse, G. Molas, B. De Salvo, in A novel HfO 2 -GeS 2 -Ag based conductive bridge RAM for reconfigurable logic applications. in Proceedings of the European Solid-State Device Research Conference (ESSDERC), (2013), p. 2013Google Scholar
  75. 75.
    K.L. Pey, N. Raghavan, X. Wu, M. Bosman, X.X. Zhang, K. Li, in Spatial correlation of conductive filaments for multiple switching cycles in CBRAM. in 2014 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2014), p. 1Google Scholar
  76. 76.
    T.L. Tsai, H.Y. Chang, F.S. Jiang, T.Y. Tseng, Impact of post-oxide deposition annealing on resistive switching in HfO2–based oxide RRAM and conductive-bridge RAM devices. IEEE Electron Device Lett. 36(11), 1146 (2015)CrossRefGoogle Scholar
  77. 77.
    M.A. Wood, M.J. Cherukara, E.M. Kober, A. Strachan, Ultrafast chemistry under nonequilibrium conditions and the shock to deflagration transition at the nanoscale. J. Phys. Chem. C. 119(38), 22008 (2015)CrossRefGoogle Scholar
  78. 78.
    M.A. Wood, A. Strachan, Nonequilibrium reaction kinetics in molecular solids. J. Phys. Chem. C. 120(1), 542 (2015)CrossRefGoogle Scholar
  79. 79.
    E.C. Neyts, A.C.T. van Duin, A. Bogaerts, Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: Effect of electric field. J. Am. Chem. Soc. 134(2), 1256 (2011)Google Scholar
  80. 80.
    T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H. Aktulga, T. Verstraelen, A. Grama, A.C.T. van Duin, The reaxFF reactive force-field: Development, applications and future directions. Npj Computational Materials. 2, 15011 (2016)Google Scholar
  81. 81.
    S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472 (2000)CrossRefGoogle Scholar
  82. 82.
    S.W. Rick, S.J. Stuart, B.J. Berne, Dynamical fluctuating charge force fields: Application to liquid water. J. Chem. Phys. 101(7), 6141 (1994)CrossRefGoogle Scholar
  83. 83.
    A.C.T. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, Reaxff: A reactive force field for hydrocarbons. J. Phys. Chem. A. 105(41), 9396 (2001)Google Scholar
  84. 84.
    F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B. 31(8), 5262 (1985)CrossRefGoogle Scholar
  85. 85.
    J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B. 39(8), 5566 (1989)CrossRefGoogle Scholar
  86. 86.
    W.J. Mortier, S.K. Ghosh, S. Shankar, Electronegativity-equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108(15), 4315 (1986)CrossRefGoogle Scholar
  87. 87.
    K.A. Rappe, W.A. Goddard III, Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95(8), 3358 (1991)CrossRefGoogle Scholar
  88. 88.
    A.C. Antony, S.A. Akhade, T. Liang, M.J. Janik, J.K. Maranas, S.B. Sinnott, Simulating an applied voltage in molecular dynamics using charge optimized many body (COMB3) potentials. ECS Trans. 69(1), 103 (2015)CrossRefGoogle Scholar
  89. 89.
    K.D. Nielson, A.C.T. van Duin, J. Oxgaard, W.Q. Deng, W.A. Goddard, Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A. 109(3), 493 (2005)Google Scholar
  90. 90.
    A.C.T. Van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, W.A. Goddard, ReaxFFSio reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A. 107(19), 3803 (2003)Google Scholar
  91. 91.
    K. Chenoweth, A.C.T. Van Duin, W.A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A. 112(5), 1040 (2008)Google Scholar
  92. 92.
    N. Onofrio, D. Guzman, A. Strachan, The dynamics of copper intercalated molybdenum ditelluride. J. Chem. Phys. 145(19), 194702 (2016)CrossRefGoogle Scholar
  93. 93.
    N. Onofrio, D. Guzman, A. Strachan, Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 14(4), 440 (2015)CrossRefGoogle Scholar
  94. 94.
    N. Onofrio, A. Strachan, Voltage equilibration for reactive atomistic simulations of electrochemical processes. J. Chem. Phys. 143(5), 054109 (2015)CrossRefGoogle Scholar
  95. 95.
    N. Onofrio, A. Strachan, Alejandro Strachan research group. https://nanohub.org/groups/strachangroup/lammpsmodules (2015)
  96. 96.
    D. Bedrov, G.D. Smith, A.C.T. van Duin, Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. J. Phys. Chem. A. 116(11), 2978 (2012)Google Scholar
  97. 97.
    J.T. Su, W.A. Goddard III, Excited electron dynamics modeling of warm dense matter. Phys. Rev. Lett. 99(18), 185003 (2007)CrossRefGoogle Scholar
  98. 98.
    S. Kale, J. Herzfeld, S. Dai, M. Blank, Lewis-inspired representation of dissociable water in clusters and Grotthuss chains. J. Biol. Phys. 38(1), 49 (2012)CrossRefGoogle Scholar
  99. 99.
    R.A. Nistor, J.G. Polihronov, M. H. Müser, N.J. Mosey, A generalization of the charge equilibration method for nonmetallic materials. J. Chem. Phys. 125(9), 094108 (2006)CrossRefGoogle Scholar
  100. 100.
    M.T. Knippenberg, P.T. Mikulski, K.E. Ryan, S.J. Stuart, G. Gao, J.A. Harrison, Bond-order potentials with split-charge equilibration: Application to C-, H-, and O-containing systems. J. Chem. Phys. 136 (16), 164701 (2012)CrossRefGoogle Scholar
  101. 101.
    W.B. Dapp, M. H. Müser, Redox reactions with empirical potentials: Atomistic battery discharge simulations. J. Chem. Phys. 139(6), 064106 (2013)CrossRefGoogle Scholar
  102. 102.
    M.M. Islam, G. Kolesov, T. Verstraelen, E. Kaxiras, A.C.T. van Duin, eReaxFF: A pseudoclassical treatment of explicit electrons within reactive force field simulations. J. Chem. Theory Comput. 12(8), 3463 (2016)Google Scholar
  103. 103.
    J.T. Su, W.A. Goddard III, The dynamics of highly excited electronic systems: Applications of the electron force field. J. Chem. Phys. 131(24), 244501 (2009)CrossRefGoogle Scholar
  104. 104.
    T. Verstraelen, P.W. Ayers, V. Van Speybroeck, M. Waroquier, ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order. J. Chem. Phys. 138(7), 074108 (2013)Google Scholar
  105. 105.
    J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer, S. Nandi, G.B. Ellison, Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem. Rev. 102(1), 231 (2002)CrossRefGoogle Scholar
  106. 106.
    K.D. Jordan, P.D. Burrow, Studies of the temporary anion states of unsaturated hydrocarbons by electron transmission spectroscopy. Acc. Chem. Res. 11(9), 341 (1978)CrossRefGoogle Scholar
  107. 107.
    M.M. Islam, A.C.T. van Duin, Reductive decomposition reactions of ethylene carbonate via explicit electron transfer from lithium An eReaxFF molecular dynamics study. J. Phys. Chem. C. 120(48), 27128 (2016)Google Scholar
  108. 108.
    S.P. Kim, A.C.T. Van Duin, V.B. Shenoy, Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study. J. Power. Sources. 196(20), 8590 (2011)Google Scholar
  109. 109.
    Y. Bernard, V.T. Renard, P. Gonon, V. Jousseaume, Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2. Microelectron. Eng. 88(5), 814 (2011)CrossRefGoogle Scholar
  110. 110.
    N. Onofrio, D. Guzman, A. Strachan, Atomistic simulations of electrochemical metallization cells: Mechanisms of ultra-fast resistance switching in nanoscale devices Nanoscale (2016)Google Scholar
  111. 111.
    I. Valov, G. Staikov, Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories. J. Solid State Electrochem. 17(2), 365 (2013)CrossRefGoogle Scholar
  112. 112.
    A. Belmonte, U. Celano, A. Redolfi, A. Fantini, R. Muller, W. Vandervorst, M. Houssa, M. Jurczak, L. Goux, Analysis of the excellent memory disturb characteristics of a Hourglass-shaped filament in Al2 O 3/Cu-based CBRAM devices. IEEE Trans. Electron Devices. 62(6), 2007 (2015)CrossRefGoogle Scholar
  113. 113.
    D.M. Guzman, N. Onofrio, A. Strachan, Stability and migration of small copper clusters in amorphous dielectrics. J. Appl. Phys. 117(19), 195702 (2015)CrossRefGoogle Scholar
  114. 114.
    S.C. Pandey, R. Meade, G.S. Sandhu, Cu impurity in insulators and in metal-insulator-metal structures: Implications for resistance-switching random access memories. J. Appl. Phys. 117(5), 054504 (2015)CrossRefGoogle Scholar
  115. 115.
    Z. Jiang, M. Povolotskyi, N. Onofrio, D. Guzman, D. Lemus, S. Perez, J. Bermeo, A. Strachan, G. Klimeck, Multi-scale quantum simulations of conductive bridging RAM. IWCE (2015)Google Scholar
  116. 116.
    S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.W. Kim, C.U. Jung, S. Seo, M.J. Lee, T.W. Noh, Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6), 1154 (2008)CrossRefGoogle Scholar
  117. 117.
    N. Xu, B. Gao, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, in A unified physical model of switching behavior in oxide-based RRAM. in 2008 IEEE Symposium on VLSI Technology-Digest of Technical Papers, (2008), pp. 100–101CrossRefGoogle Scholar
  118. 118.
    X. Guan, S. Yu, H.S.P. Wong, On the switching parameter variation of metal-oxide RRAM – Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices. 59(4), 1172 (2012)CrossRefGoogle Scholar
  119. 119.
    L. Larcher, A. Padovani, O. Pirrotta, L. Vandelli, G. Bersuker, in Microscopic understanding and modeling of HfO 2 RRAM device physics. in 2012 IEEE International Electron Devices Meeting (IEDM) Technical Digest, (2012), p. 474Google Scholar
  120. 120.
    S. Qin, Z. Liu, G. Zhang, J. Zhang, Y. Sun, H. Wu, H. Qian, Z. Yu, Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory. Phys. Chem. Chem. Phys. 17, 8627 (2015)CrossRefGoogle Scholar
  121. 121.
    J. Guy, G. Molas, P. Blaise, M. Bernard, A. Roule, G. Le Carval, V. Delaye, A. Toffoli, G. Ghibaudo, F. Clermidy, B. De Salvo, L. Perniola, Investigation of forming, SET, and data retention of conductive-bridge random-access memory for stack optimization. IEEE Trans. Electron Devices. 62, 3482 (2015)CrossRefGoogle Scholar
  122. 122.
    S. Menzel, P. Kaupmann, R. Waser, Understanding filamentary growth in electrochemical metallization memory cells using Kinetic Monte Carlo simulations. Nanoscale. 7, 12673 (2015)CrossRefGoogle Scholar
  123. 123.
    F. Pan, S. Yin, V. Subramanian, A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. IEEE Electron Device Lett. 32, 949 (2011)CrossRefGoogle Scholar
  124. 124.
    A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, G. Bersuker, Microscopic modeling of HfOx RRAM operations From forming to switching. IEEE Trans. Electron Devices. 62, 1998 (2015)CrossRefGoogle Scholar
  125. 125.
    J. Hur, D. Lee, S. Jeon, A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides. Appl. Phys. Lett. 203504, 107 (2015)Google Scholar
  126. 126.
    D. Ielmini, Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth. IEEE Trans. Electron Devices. 58(12), 4309 (2011)CrossRefGoogle Scholar
  127. 127.
    S. Yu, H.S.P. Wong, Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron devices. 58(5), 1352 (2011)CrossRefGoogle Scholar
  128. 128.
    S. Lin, L. Zhao, J. Zhang, H. Wu, Y. Wang, H. Qian, Z. Yu, in Electrochemical simulation of filament growth and dissolution in conductive-bridging RAM (CBRAM) with cylindrical coordinates. in 2012 IEEE International Electron Devices Meeting (IEDM) Technical Digest, (2012), p. 593Google Scholar
  129. 129.
    S. Ambrogio, S. Balatti, D.C. Gilmer, D. Ielmini, Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices. 61, 2378–2386 (2014)CrossRefGoogle Scholar
  130. 130.
    S. Yu, Y. Wu, H.S.P. Wong, Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98(10), 103514 (2011)CrossRefGoogle Scholar
  131. 131.
    Z. Fang, H.Y. Yu, W.J. Fan, G. Ghibaudo, J. Buckley, B. DeSalvo, X. Li, X.P. Wang, G.Q. Lo, D.L. Kwong, Current conduction model for oxide-based resistive random access memory verified by low-frequency noise analysis. IEEE Trans. Electron Devices. 60(3), 1272 (2013)CrossRefGoogle Scholar
  132. 132.
    S. Lv, H. Wang, J. Zhang, J. Liu, L. Sun, Z. Yu, An analytical model for the forming process of conductive-bridge resistive-switching random-access memory. IEEE Trans. Electron Devices. 61, 3166–3171 (2014)CrossRefGoogle Scholar
  133. 133.
    S. Menzel, S. Tappertzhofen, R. Waser, I. Valov, Switching kinetics of electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 15, 6945 (2013)CrossRefGoogle Scholar
  134. 134.
    P. Sun, L. Li, N. Lu, Y. Li, M. Wang, H. Xie, S. Liu, M. Liu, Physical model of dynamic Joule heating effect for reset process in conductive-bridge random access memory. J. Comput. Electron. 13, 432 (2014)CrossRefGoogle Scholar
  135. 135.
    R. Degraeve, A. Fantini, S. Clima, B. Govoreanu, L. Goux, Y.Y. Chen, D.J. Wouters, P. Roussel, G.S. Kar, G. Pourtois, S. Cosemans, J.A. Kittl, G. Groeseneken, M. Jurczak, L. Altimime, in Dynamic ’hour glass’ model for SET and RESET in HfO 2 RRAM. in 2012 IEEE Symposium on VLSI Technology-Digest of Technical Papers (IEEE, 2012), p. 75Google Scholar
  136. 136.
    S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. Ielmini, Statistical fluctuations in HfOx resistive-switching memory Part I - Set/Reset variability. IEEE Trans. Electron Devices. 61 (8), 2912 (2014)CrossRefGoogle Scholar
  137. 137.
    N. Raghavan, R. Degraeve, A. Fantini, L. Goux, S. Strangio, B. Govoreanu, D.J. Wouters, G. Groeseneken, M. Jurczak, in Microscopic origin of random telegraph noise fluctuations in aggressively scaled RRAM and its impact on read disturb variability. in 2013 IEEE International Reliability Physics Symposium (IRPS) (IEEE, 2013), pp. 5E–3Google Scholar
  138. 138.
    A. Fantini, L. Goux, R. Degraeve, D.J. Wouters, N. Raghavan, G. Kar, A. Belmonte, Y.-Y. Chen, B. Govoreanu, M. Jurczak, in Intrinsic switching variability in HfO2 RRAM. in Memory Workshop (IMW), 2013 5th IEEE International (IEEE, 2013), p. 30Google Scholar
  139. 139.
    I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, et al., in Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. in 2004 IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2004), p. 587Google Scholar
  140. 140.
    I.G. Baek, D.C. Kim, M.J. Lee, H.J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, et al., in Multi-layer cross-point binary oxide resistive memory (oxrram) for post-NAND storage application. in 2005 IEEE International Electron Devices Meeting (IEDM) Technical Digest (IEEE, 2005), p. 750Google Scholar
  141. 141.
    G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology. 24, 384010 (2013)CrossRefGoogle Scholar
  142. 142.
    M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello, D. Vuillaume, C. Gamrat, B. DeSalvo, Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron Devices. 60(7), 2402 (2013)CrossRefGoogle Scholar
  143. 143.
    B.L. Jackson, B. Rajendran, G.S. Corrado, M. Breitwisch, G.W. Burr, R. Cheek, K. Gopalakrishnan, S. Raoux, C. Rettner, A. Padilla, A.G. Schrott, R.S. Shenoy, B.N. Kurdi, C.H. Lam, D.S. Modha, Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. 9(2), 1 (2013)CrossRefGoogle Scholar
  144. 144.
    M. Youssef, B. Yildiz, Predicting self diffusion in metal oxides from first principles: The case of oxygen in tetragonal ZrO2. Phys. Rev. B. 89(2), 024105 (2014)CrossRefGoogle Scholar
  145. 145.
    M. Panzer, M. Shandalov, J. Rowlette, Y. Oshima, Y.W. Chen, P. McIntyre, K. Goodson, Thermal properties of ultrathin hafnium oxide gate dielectric films. IEEE Electron Device Lett. 30(12), 1269 (2009)CrossRefGoogle Scholar
  146. 146.
    S. Larentis, F. Nardi, S. Balatti, D.C. Gilmer, D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM – Part II Modeling. IEEE Trans. Electron Devices. 59(9), 2468 (2012)CrossRefGoogle Scholar
  147. 147.
    S. Kim, S.J. Kim, K.M. Kim, S.R. Lee, M. Chang, E. Cho, Y.B. Kim, C.J. Kim, U.I. Chung, I.K. Yoo, Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013)CrossRefGoogle Scholar
  148. 148.
    F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, D.J. Wouters, Control of filament size and reduction of reset current below 10 μ A in NiO resistance switching memories. Solid-State Electron. 58(1), 42 (2011)CrossRefGoogle Scholar
  149. 149.
    A. Marchewka, B. Roesgen, K. Skaja, H. Du, C.L. Jia, J. Mayer, V. Rana, R. Waser, S. Menzel, Nanoionic resistive switching memories: On the physical nature of the dynamic reset process. Advanced Electronic Materials. 2, 1500233 (2016)CrossRefGoogle Scholar
  150. 150.
    J.S. Lee, S.B. Lee, B. Kahng, T.W. Noh, Two opposite hysteresis curves in semiconductors with mobile dopants. Appl. Phys. Lett. 102, 253503 (2013)CrossRefGoogle Scholar
  151. 151.
    S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. Ielmini, Statistical fluctuations in HfOx resistive-switching memory Part II – random telegraph noise. IEEE Trans. Electron Devices. 61(8), 2920 (2014)CrossRefGoogle Scholar
  152. 152.
    S. Ambrogio, S. Balatti, V. McCaffrey, D.C. Wang, D. Ielmini, Noise-induced resistance broadening in resistive switching memory – Part II Array statistics. IEEE Trans. Electron Devices. 62(11), 3812 (2015)CrossRefGoogle Scholar
  153. 153.
    K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Discrete resistance switching in submicrometer silicon inversion layers Individual interface traps and low-frequency (1 f) noise. Phys. Rev. Lett. 52(3), 228 (1984)CrossRefGoogle Scholar
  154. 154.
    R. Soni, P. Meuffels, A. Petraru, M. Weides, C. Kügeler, R. Waser, H. Kohlstedt, Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise. J. Appl. Phys. 107(2), 024517 (2010)CrossRefGoogle Scholar
  155. 155.
    D. Veksler, G. Bersuker, L. Vandelli, A. Padovani, L. Larcher, A. Muraviev, B. Chakrabarti, E. Vogel, D.C. Gilmer, P.D. Kirsch, in Random telegraph noise (RTN) In scaled RRAM devices. in 2013 IEEE International Reliability Physics Symposium (IRPS) (IEEE, p. 2013Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Stefano Ambrogio
    • 1
  • Blanka Magyari-Köpe
    • 2
  • Nicolas Onofrio
    • 3
  • Md Mahbubul Islam
    • 4
  • Dan Duncan
    • 2
  • Yoshio Nishi
    • 2
  • Alejandro Strachan
    • 4
  1. 1.Dipartimento di Elettronica, Informazione e Bioingegneria, Italian Universities Nanoelectronics TeamPolitecnico di MilanoMilanoItaly
  2. 2.Department of Electrical EngineeringStanford UniversityStanfordUSA
  3. 3.Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
  4. 4.School of Materials Engineering and Birck Nanotechnology Center Purdue UniversityWest LafayetteUSA

Personalised recommendations