Advertisement

Journal of Electroceramics

, Volume 39, Issue 1–4, pp 157–184 | Cite as

Interface-type resistive switching in perovskite materials

  • S. Bagdzevicius
  • K. Maas
  • M. Boudard
  • M. BurrielEmail author
Article

Abstract

Resistive switching (RS) is currently one of the hot topics in the frontier between materials science and microelectronics, crosslinking both research communities. Among the different types of RS phenomena that have been reported, this review focuses particularly on interface-type RS, for which the change in resistance is related to a modification in the materials properties occurring at the interface over the entire electrode area. In particular we have summarized the most interesting reports on perovskite oxides, a versatile oxide crystal structure which presents a plethora of functional properties depending on its exact composition and structural symmetry. We present the most relevant mechanisms inducing RS, such as valence change, due to a combination of oxygen vacancy drift and redox reactions; electronic correlations; and ferroelectricity. For each case we explain the physico-chemical processes triggered by the application of an external voltage (or current), which ultimately lead to a change in resistance at the interface between the metal electrode and the oxide. Special attention is paid to the material aspects of interface-type switching, and in particular to how the RS characteristics can be improved or triggered by cation doping and oxygen off-stoichiometry, by the introduction of additional layers and by changing the nature of the electrodes. Recent progress in memristive devices based on perovskites is also reported and the figures of merit reached are compared to those obtained for state-of-the-art filamentary type RS binary oxides.

Keywords

Resistive switching Perovskite oxides Materials for microelectronics Interface-type RS ReRAM Switching mechanisms 

Notes

Acknowledgments

This work has been partially supported by the LabEx Minos ANR-10-LABX-55-01 and by two ANR funded projects MICROSWITCH (ANR-14-ACHN-0012) and Alps Memories (ANR-15-CE24-0018). Dr. Carlos Acha is kindly acknowledged for critical reading.

References

  1. 1.
    D. Ielmini, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol 31(6), 63002 (2016)CrossRefGoogle Scholar
  2. 2.
    D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys 75(7), 76502 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Waser, Redox-based resistive switching memories. J. Nanosci. Nanotechnol. 12(10), 7628–7640 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Waser, D. Ielmini, H. Akinaga, H. Shima, H.-S.P. Wong, J.J. Yang, S. Yu, Introduction to nanoionic elements for information technology. in Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications (2016), pp. 1–30Google Scholar
  5. 5.
    G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D. Suh, J.C. Park, S. Park, H.S. Kim, I.K. Yoo, U. Chung, I.T. Moon, Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses (2004), pp. 587–590Google Scholar
  6. 6.
    H.Y. Peng, G.P. Li, J.Y. Ye, Z.P. Wei, Z. Zhang, D.D. Wang, G.Z. Xing, T. Wu, Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms (2010), pp. 19–21Google Scholar
  7. 7.
    H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.-H. Lee, W. Kim, Y. Park, I.-K. Yoo, H. Hwang, Excellent resistance switching characteristics of Pt/SrTiO3 Schottky junction for multi-bit nonvolatile memory application. Ieee 0(c), 8–11 (2005)Google Scholar
  8. 8.
    M. Hasan, R. Dong, H.J. Choi, D.S. Lee, D.-J. Seong, M.B. Pyun, H. Hwang, Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures. Appl. Phys. Lett. 92(20), 202102 (2008)CrossRefGoogle Scholar
  9. 9.
    L. Goux, S. Spiga, Unipolar resistive-switching mechanisms. in Resistive Switching (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp. 363–394Google Scholar
  10. 10.
    A. Sawa, R. Meyer, Interface-type switching. in Resistive Switching (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp. 457–482Google Scholar
  11. 11.
    R. Muenstermann, T. Menke, R. Dittmann, R. Waser, Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film Memristive devices. Adv. Mater. 22(43), 4819–4822 (2010)CrossRefGoogle Scholar
  12. 12.
    V. Garcia, M. Bibes, Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 1–12 (2014)CrossRefGoogle Scholar
  13. 13.
    Z.B. Yan, J.-M. Liu, Resistance switching memory in perovskite oxides. Ann. Phys. (N. Y.) 358, 206–224 (2015)CrossRefGoogle Scholar
  14. 14.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors 2.0 2015 Edition, Beyond CMOS (2015)Google Scholar
  15. 15.
    J.S. Lee, S. Lee, T.W. Noh, Resistive switching phenomena: A review of statistical physics approaches. Appl. Phys. Rev. 2(3), 31303 (2015)CrossRefGoogle Scholar
  16. 16.
    F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R. Rep. 83, 1–59 (2014)CrossRefGoogle Scholar
  17. 17.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013)CrossRefGoogle Scholar
  18. 18.
    C. Baeumer, C. Schmitz, A.H.H. Ramadan, H. Du, K. Skaja, V. Feyer, P. Müller, B. Arndt, C.-L. Jia, J. Mayer, R.A. De Souza, C. Michael Schneider, R. Waser, R. Dittmann, S. Figure, Spectromicroscopic insights for rational design of redox-based memristive devices. Nat. Commun. 6, 8610 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.E. Karg, B.P. Andreasson, Role of oxygen vacancies in cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19(17), 2232–2235 (2007)CrossRefGoogle Scholar
  20. 20.
    M. Buckwell, L. Montesi, S. Hudziak, A. Mehonicç, A.J. Kenyon, Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale. 7, 18030–18035 (2015)CrossRefGoogle Scholar
  21. 21.
    T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, K. Kobayashi, T. Chikyow, Observation of filament formation process of Cu/HfO2/Pt ReRAM structure by hard x-ray photoelectron spectroscopy under bias operation. J. Mater. Res. 27(6), 869–878 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Yang, W. Lü, Y. Yao, J. Sun, C. Gu, L. Gu, Y. Wang, X. Duan, R. Yu, In situ TEM observation of resistance switching in titanate based device. Sci. Rep. 4, 3890 (2014)CrossRefGoogle Scholar
  23. 23.
    H.-S. Lee, H.-H. Park, M.J. Rozenberg, Manganite-based memristive heterojunction with tunable non-linear I-V characteristics. Nanoscale 7(15), 6444–6450 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Asanuma, H. Akoh, H. Yamada, A. Sawa, Relationship between resistive switching characteristics and band diagrams of Ti/Pr1-xCaMnO3 junctions. Phys. Rev. B 80(23), 235113 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Norpoth, S. Mildner, M. Scherff, J. Hoffmann, C. Jooss, In situ TEM analysis of resistive switching in manganite based thin-film heterostructures. Nanoscale 6(16), 9852–9862 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Menzel, U. Böttger, M. Wimmer, M. Salinga, Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25(40), 6306–6325 (2015)CrossRefGoogle Scholar
  27. 27.
    F. Messerschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp, Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO 3-δ bits: The Memristor-based Cottrell analysis connecting material to device performance. Adv. Funct. Mater. 24, 7447 (2014)CrossRefGoogle Scholar
  28. 28.
    S.D. Ha, S. Ramanathan, Adaptive oxide electronics: A review. J. Appl. Phys. 110(7), 71101 (2011)CrossRefGoogle Scholar
  29. 29.
    P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448 (2014)CrossRefGoogle Scholar
  30. 30.
    V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14(21), 477–485 (1926)CrossRefGoogle Scholar
  31. 31.
    C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX 3 ( X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. Sect. B: Struct. Sci. 64(6), 702–707 (2008)CrossRefGoogle Scholar
  32. 32.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)CrossRefGoogle Scholar
  33. 33.
    H.D. Megaw, Crystal structure of double oxides of the perovskite type. Proc. Phys. Soc. 58(3), 340–340 (1946)CrossRefGoogle Scholar
  34. 34.
    R.S. Roth, Classification of perovskite and other ABO3-type compounds. J. Res. Natl. Bur. Stand. (1934) 58(2), 75 (1957)CrossRefGoogle Scholar
  35. 35.
    A.K. Tagantsev, L.E. Cross, J. Fousek, Domains in Ferroic Crystals and Thin Films (Springer, New York, 2010)CrossRefGoogle Scholar
  36. 36.
    R.M. Glaister, H.F. Kay, An investigation of the cubic-hexagonal transition in barium titanate. Proc. Phys. Soc. 76(5), 763–771 (1960)CrossRefGoogle Scholar
  37. 37.
    M. Zhu, P. Komissinskiy, A. Radetinac, Z. Wang, L. Alff, Joint effect of composition and strain on the anomalous transport properties of LaNiO3 films. J. Appl. Phys. 117(15), 155306 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Vasala, M. Karppinen, A2B′B″O6 perovskites: A review. Prog. Solid State Chem. 43(1), 1–36 (2015)CrossRefGoogle Scholar
  39. 39.
    B.V. Beznosikov, K.S. Aleksandrov, Perovskite-like crystals of the Ruddlesden-Popper series. Crystallogr. Rep. 45(5), 792–798 (2000)CrossRefGoogle Scholar
  40. 40.
    M. Josse, O. Bidault, F. Roulland, E. Castel, A. Simon, D. Michau, R. Von der Mühll, O. Nguyen, M. Maglione, The Ba2LnFeNb4O15 ‘tetragonal tungsten bronze’: Towards RT composite multiferroics. Solid State Sci. 11(6), 1118–1123 (2009)CrossRefGoogle Scholar
  41. 41.
    S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)CrossRefGoogle Scholar
  42. 42.
    S.A. Prosandeyev, A.V. Fisenko, A.I. Riabchinski, I.A. Osipenko, I.P. Raevski, N. Safontseva, Study of intrinsic point defects in oxides of the perovskite family: I. Theory. J. Phys. Condens. Matter 8(36), 6705–6717 (1996)CrossRefGoogle Scholar
  43. 43.
    I.P. Raevski, S.M. Maksimov, A.V. Fisenko, S.A. Prosandeyev, I.A. Osipenko, P.F. Tarasenko, Study of intrinsic point defects in oxides of the perovskite family: II. Experiment. J. Phys. Condens. Matter 10(36), 8015–8032 (1998)CrossRefGoogle Scholar
  44. 44.
    T. Menke, P. Meuffels, R. Dittmann, K. Szot, R. Waser, Separation of bulk and interface contributions to electroforming and resistive switching behavior of epitaxial Fe-doped SrTiO3. J. Appl. Phys. 105(6), 66104 (2009)CrossRefGoogle Scholar
  45. 45.
    R. Moos, K.H. Hardtl, Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400°C. J. Am. Ceram. Soc. 80(10), 2549–2562 (2005)CrossRefGoogle Scholar
  46. 46.
    R. Groenen, J. Smit, K. Orsel, A. Vailionis, B. Bastiaens, M. Huijben, K. Boller, G. Rijnders, G. Koster, Research update: Stoichiometry controlled oxide thin film growth by pulsed laser deposition. APL Mater. 3(7), 70701 (2015)CrossRefGoogle Scholar
  47. 47.
    M.J. Akhtar, Z.-U.-N. Akhtar, R.A. Jackson, C.R.A. Catlow, Computer simulation studies of strontium titanate. J. Am. Ceram. Soc. 78(2), 421–428 (1995)CrossRefGoogle Scholar
  48. 48.
    F.A. Kröger, H.J. Vink, Relations between the concentrations of imperfactions in crystalline solids. Solid State Phys. 3(I), 310–435 (1956)Google Scholar
  49. 49.
    R.A. De Souza, Ion transport in metal oxides. in Resistive Switching (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp. 125–164Google Scholar
  50. 50.
    E.W. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: A survey. Electronics 4(3), 586–613 (2015)CrossRefGoogle Scholar
  51. 51.
    S. Yu, Resisitive Switching Memory for Non-volatile Storage and Neuromorphic Computing (Stanford University, 2013)Google Scholar
  52. 52.
    F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 1–18 (2014)Google Scholar
  53. 53.
    H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.-H. Lee, W. Kim, Y. Park, I.-K. Yoo, H.H. Hyunsang, Excellent resistance switching characteristics of Pt/SrTiO3 schottky junction for multi-bit nonvolatile memory application. in IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest (2005), pp. 758–761Google Scholar
  54. 54.
    K.-T. Park, S. Nam, D. Kim, P. Kwak, D. Lee, Y.-H. Choi, M. Choi, D. Kwak, D.-H. Kim, M.-S. Kim, H.-W. Park, S.-W. Shim, K. Kang, S. Park, K. Lee, H. Yoon, K. Ko, D. Shim, Y. Ahn, J. Ryu, D. Kim, K. Yun, J. Kwon, S. Shin, D. Byeon, K. Choi, J.-M. Han, K.-H. Kyung, J.-H. Choi, K. Kim, Three-dimensional 128 Gb MLC vertical nand flash memory with 24-WL stacked layers and 50 MB/s high-speed programming. IEEE J. Solid State Circuits 50(1), 204–213 (2015)CrossRefGoogle Scholar
  55. 55.
    A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008)CrossRefGoogle Scholar
  56. 56.
    E. Mikheev, B.D. Hoskins, D.B. Strukov, S. Stemmer, Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nat. Commun. 5, 3990 (2014)CrossRefGoogle Scholar
  57. 57.
    S.H. Jeon, B.H. Park, J. Lee, B. Lee, S. Han, First-principles modeling of resistance switching in perovskite oxide material. Appl. Phys. Lett. 89(4), 42904 (2006)CrossRefGoogle Scholar
  58. 58.
    M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp, Uncovering two competing switching mechanisms for epitaxial and ultra-thin strontium titanate-based resistive switching bits. ACS Nano 9, 10737–10748 (2015)CrossRefGoogle Scholar
  59. 59.
    C.H. Kim, Y. Ahn, J.Y. Son, SrTiO3 -based resistive switching memory device with graphene nanoribbon electrodes. J. Am. Ceram. Soc. 99(1), 9–11 (2016)CrossRefGoogle Scholar
  60. 60.
    Y. Cui, H. Peng, S. Wu, R. Wang, T. Wu, Complementary charge trapping and ionic migration in resistive switching of rare-earth manganite TbMnO3. ACS Appl. Mater. Interfaces 5(4), 1213–1217 (2013)CrossRefGoogle Scholar
  61. 61.
    R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. A Math. Phys. Eng. Sci. 119(781), 173–181 (1928)CrossRefGoogle Scholar
  62. 62.
    L. Huang, B. Qu, L. Liu, Bistable resistive switching of pulsed laser deposited polycrystalline La0.67Sr0.33MnO3 films. in 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (2008), pp. 936–939Google Scholar
  63. 63.
    Z.L. Liao, P. Gao, Y. Meng, H.W. Zhao, X.D. Bai, J.D. Zhang, D.M. Chen, Electroforming and endurance behavior of Al/Pr0.7Ca0.3MnO3/Pt devices. Appl. Phys. Lett. 99(11), 113506 (2011)CrossRefGoogle Scholar
  64. 64.
    H. Nafe, Resistive switching: A solid-state electrochemical phenomenon. ECS J. Solid State Sci. Technol. 2(11), P423–P431 (2013)CrossRefGoogle Scholar
  65. 65.
    A.N. Morozovska, E.A. Eliseev, O.V. Varenyk, Y. Kim, E. Strelcov, A. Tselev, N.V. Morozovsky, S.V. Kalinin, Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response. J. Appl. Phys. 116(6), 66808 (2014)CrossRefGoogle Scholar
  66. 66.
    X. Chen, G. Wu, H. Zhang, N. Qin, T. Wang, F. Wang, W. Shi, D. Bao, Nonvolatile bipolar resistance switching effects in multiferroic BiFeO 3 thin films on LaNiO3-electrodized Si substrates. Appl. Phys. A Mater. Sci. Process. 100(4), 987–990 (2010)CrossRefGoogle Scholar
  67. 67.
    C.-H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8(6), 485–493 (2009)CrossRefGoogle Scholar
  68. 68.
    P.W.M. Blom, R.M. Wolf, J.F.M. Cillessen, M.P.C.M. Krijn, Ferroelectric Schottky Diode. Phys. Rev. Lett. 73(15), 2107–2110 (1994)CrossRefGoogle Scholar
  69. 69.
    X.T. Zhang, Q.X. Yu, Y.P. Yao, X.G. Li, Ultrafast resistive switching in SrTiO3:Nb single crystal. Appl. Phys. Lett. 97(22), 222117 (2010)CrossRefGoogle Scholar
  70. 70.
    X.J. Liu, X.M. Li, Q. Wang, W.D. Yu, R. Yang, X. Cao, X.D. Gao, L.D. Chen, Improved resistive switching properties in stacked structures. Solid State Commun. 150(1–2), 137–141 (2010)CrossRefGoogle Scholar
  71. 71.
    H. Schroeder, V.V. Zhirnov, R.K. Cavin, R. Waser, Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells. J. Appl. Phys. 107(5), 54517 (2010)CrossRefGoogle Scholar
  72. 72.
    D. Seong, D. Lee, M. Pyun, J. Yoon, H. Hwang, Understanding of the switching mechanism of a Pt/Ni-Doped SrTiO 3 junction via current–voltage and capacitance–voltage measurements. Jpn. J. Appl. Phys. 47(12), 8749–8751 (2008)CrossRefGoogle Scholar
  73. 73.
    A. Odagawa, H. Sato, I.H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, H. Adachi, Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature. Phys. Rev. B 70(22), 224403 (2004)CrossRefGoogle Scholar
  74. 74.
    Y.C. Yang, F. Pan, F. Zeng, M. Liu, Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization. J. Appl. Phys. 106(12), 123705 (2009)CrossRefGoogle Scholar
  75. 75.
    A. Buin, P. Pietsch, J. Xu, O. Voznyy, A.H. Ip, R. Comin, E.H. Sargent, Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014)CrossRefGoogle Scholar
  76. 76.
    E. Janod, J. Tranchant, B. Corraze, M. Querré, P. Stoliar, M. Rozenberg, T. Cren, D. Roditchev, V.T. Phuoc, M.-P. Besland, L. Cario, Resistive switching in Mott insulators and correlated systems. Adv. Funct. Mater. 25(40), 6287–6305 (2015)CrossRefGoogle Scholar
  77. 77.
    A.B.K. Chen, S.G. Kim, Y. Wang, W.-S. Tung, I.-W. Chen, A size-dependent nanoscale metal-insulator transition in random materials. Nat. Nanotechnol. 6(4), 237–241 (2011)CrossRefGoogle Scholar
  78. 78.
    S. Wu, X. Luo, S. Turner, H. Peng, W. Lin, J. Ding, A. David, B. Wang, G. Van Tendeloo, J. Wang, T. Wu, Nonvolatile resistive switching in Pt/LaNiO3/SrTiO3 heterostructures. Phys. Rev. X 3(4), 41027 (2013)Google Scholar
  79. 79.
    E.J. Yoo, M. Lyu, J. Yun, C.J. Kang, Y.J. Choi, L. Wang, Resistive switching behavior in organic-inorganic hybrid CH 3 NH 3 PbI 3 −x Cl x perovskite for resistive random access memory devices. Adv. Mater. 27(40), 6170–6175 (2015)CrossRefGoogle Scholar
  80. 80.
    A. Rose, Space-Charge-Limited Currents in Solids. Phys. Rev. 97(6), 1538–1544 (1955)CrossRefGoogle Scholar
  81. 81.
    K. Zheng, K. Žídek, M. Abdellah, M.E. Messing, M.J. Al-Marri, T. Pullerits, Trap states and their dynamics in organometal halide perovskite nanoparticles and bulk crystals. J. Phys. Chem. C 120(5), 3077–3084 (2016)CrossRefGoogle Scholar
  82. 82.
    J.G. Bednorz, K.A. Müller, Perovskite-type oxides—the new approach to high- T c superconductivity. Rev. Mod. Phys. 60(3), 585–600 (1988)CrossRefGoogle Scholar
  83. 83.
    Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200(1), 1–23 (1999)CrossRefGoogle Scholar
  84. 84.
    P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)CrossRefGoogle Scholar
  85. 85.
    M. Cyrot, Theory of mott transition : Applications to transition metal oxides. J. Phys. 33(1), 125–134 (1972)CrossRefGoogle Scholar
  86. 86.
    K.-H. Xue, C.A. Paz de Araujo, J. Celinska, C. McWilliams, A non-filamentary model for unipolar switching transition metal oxide resistance random access memories. J. Appl. Phys. 109(9), 91602 (2011)CrossRefGoogle Scholar
  87. 87.
    R. Fors, S.I. Khartsev, A.M. Grishin, Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition. Phys. Rev. B: Condens. Matter Mater. Phys. 71(4), 1–10 (2005)CrossRefGoogle Scholar
  88. 88.
    T. Oka, N. Nagaosa, Interfaces of correlated electron systems: Proposed mechanism for colossal electroresistance. Phys. Rev. Lett. 95(26), 266403 (2005)CrossRefGoogle Scholar
  89. 89.
    G. Kotliar, D. Vollhardt, Strongly correlated materials: Insights from dynamical mean-field theory. Phys. Today 57(3), 53–59 (2004)CrossRefGoogle Scholar
  90. 90.
    E. Morosan, D. Natelson, A.H. Nevidomskyy, Q. Si, Strongly correlated materials. Adv. Mater. 24(36), 4896–4923 (2012)CrossRefGoogle Scholar
  91. 91.
    M.J. Rozenberg, I.H. Inoue, M.J. Sánchez, Strong electron correlation effects in nonvolatile electronic memory devices. Appl. Phys. Lett. 88(3), 33510 (2006)CrossRefGoogle Scholar
  92. 92.
    F. Nakamura, M. Sakaki, Y. Yamanaka, S. Tamaru, T. Suzuki, Y. Maeno, Electric-field-induced metal maintained by current of the Mott insulator Ca2RuO4. Sci. Rep. 3, 2536 (2013)CrossRefGoogle Scholar
  93. 93.
    J.F. Scott, Applications of modern ferroelectrics. Science (80-. ). 315(5814), 954–959 (2007)CrossRefGoogle Scholar
  94. 94.
    S.L. Miller, P.J. McWhorter, Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 72(12), 5999 (1992)CrossRefGoogle Scholar
  95. 95.
    T. Oikawa, H. Morioka, A. Nagai, H. Funakubo, K. Saito, Thickness scaling of polycrystalline Pb(Zr,Ti)O3 films down to 35 nm prepared by metalorganic chemical vapor deposition having good ferroelectric properties. Appl. Phys. Lett. 85(10), 1754 (2004)CrossRefGoogle Scholar
  96. 96.
    A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N.D. Mathur, M. Bibes, A. Barthélémy, Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7(2), 101–104 (2011)CrossRefGoogle Scholar
  97. 97.
    A.Q. Jiang, C. Wang, K.J. Jin, X.B. Liu, J.F. Scott, C.S. Hwang, T.A. Tang, H. Bin Lu, G.Z. Yang, A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 23(10), 1277–1281 (2011)CrossRefGoogle Scholar
  98. 98.
    H. Yamada, V. Garcia, S. Fusil, S. Boyn, M. Marinova, A. Gloter, S. Xavier, J. Grollier, E. Jacquet, C. Carrétéro, C. Deranlot, M. Bibes, A. Barthélémy, Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. ACS Nano 7(6), 5385–5390 (2013)CrossRefGoogle Scholar
  99. 99.
    P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A.P. Baddorf, S.V. Kalinin, Polarization control of electron tunneling into ferroelectric surfaces. Science (80-. ). 324(5933), 1421–1425 (2009)CrossRefGoogle Scholar
  100. 100.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006)CrossRefGoogle Scholar
  101. 101.
    D.S. Shang, Q. Wang, L.D. Chen, R. Dong, X.M. Li, W.Q. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures. Phys. Rev. B 73(24), 245427 (2006)CrossRefGoogle Scholar
  102. 102.
    Y.J. Fu, F.J. Xia, Y.L. Jia, C.J. Jia, J.Y. Li, X.H. Dai, G.S. Fu, B.Y. Zhu, B.T. Liu, Bipolar resistive switching behavior of La0.5Sr0.5CoO3−σ films for nonvolatile memory applications. Appl. Phys. Lett. 104(22), 223505 (2014)CrossRefGoogle Scholar
  103. 103.
    M. Hamaguchi, K. Aoyama, S. Asanuma, Y. Uesu, T. Katsufuji, Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films. Appl. Phys. Lett. 88(14), 142508 (2006)CrossRefGoogle Scholar
  104. 104.
    C. Acha, A. Schulman, M. Boudard, K. Daoudi, T. Tsuchiya, Transport mechanism through metal-cobaltite interfaces. Appl. Phys. Lett. 109(1), 11603 (2016)CrossRefGoogle Scholar
  105. 105.
    Z. Othmen, A. Schulman, K. Daoudi, M. Boudard, C. Acha, H. Roussel, M. Oueslati, T. Tsuchiya, Structural, electrical and magnetic properties of epitaxial La0.7Sr0.3CoO3 thin films grown on SrTiO3 and LaAlO3 substrates. Appl. Surf. Sci. 306, 60–65 (2014)CrossRefGoogle Scholar
  106. 106.
    A. Bozhko, M. Shupegin, T. Takagi, Space-charge-limited current in hydrogenated amorphous carbon films containing silicon and oxygen. Diam. Relat. Mater. 11(10), 1753–1759 (2002)CrossRefGoogle Scholar
  107. 107.
    C. Acha, Dynamical behaviour of the resistive switching in ceramic YBCO/metal interfaces. J. Phys. D. Appl. Phys. 44(34), 345301 (2011)CrossRefGoogle Scholar
  108. 108.
    F. Gomez-Marlasca, N. Ghenzi, A.G. Leyva, C. Albornoz, D. Rubi, P. Stoliar, P. Levy, Modeling electronic transport mechanisms in metal-manganite memristive interfaces. J. Appl. Phys. 113(14), 144510 (2013)CrossRefGoogle Scholar
  109. 109.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors 2011 Edition (2011)Google Scholar
  110. 110.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors 2.0 2015 Edition, More Moore (2015)Google Scholar
  111. 111.
    A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)CrossRefGoogle Scholar
  112. 112.
    M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I.I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10(8), 625–630 (2011)CrossRefGoogle Scholar
  113. 113.
    T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91(9), 92110 (2007)CrossRefGoogle Scholar
  114. 114.
    Y.Y. Chen, L. Goux, S. Clima, B. Govoreanu, R. Degraeve, G.S. Kar, A. Fantini, G. Groeseneken, D.J. Wouters, M. Jurczak, Endurance/retention trade-off on HfO2/metal cap 1T1R bipolar RRAM. IEEE Trans. Electron Devices 60(3), 1114–1121 (2013)CrossRefGoogle Scholar
  115. 115.
    H.Y. Lee, Y.S. Chen, P.S. Chen, P.Y. Gu, Y.Y. Hsu, S.M. Wang, W.H. Liu, C.H. Tsai, S.S. Sheu, P.C. Chiang, W.P. Lin, C.H. Lin, W.S. Chen, F.T. Chen, C.H. Lien, M.-J. Tsai, Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance. in 2010 International Electron Devices Meeting (2010), p. 19.7.1–19.7.4Google Scholar
  116. 116.
    M.Y. Song, Y. Seo, Y.S. Kim, H.D. Kim, H.-M. An, B.H. Park, Y.M. Sung, T.G. Kim, Realization of one-diode–type resistive-switching memory with Cr–SrTiO3 film. Appl. Phys. Express 5(9), 91202 (2012)CrossRefGoogle Scholar
  117. 117.
    J.P.B. Silva, K. Kamakshi, K.C. Sekhar, J.A. Moreira, A. Almeida, M. Pereira, M.J.M. Gomes, Light-controlled resistive switching in laser-assisted annealed Ba0.8Sr0.2TiO3 thin films. Phys. Status Solidi 213(4), 1082–1087 (2016)CrossRefGoogle Scholar
  118. 118.
    Z. Yan, Y. Guo, G. Zhang, J.-M. Liu, High-performance programmable memory devices based on co-doped BaTiO3. Adv. Mater. 23(11), 1351–1355 (2011)CrossRefGoogle Scholar
  119. 119.
    R. Collier, Transmission Lines (Cambridge University Press, 2013)Google Scholar
  120. 120.
    K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012)CrossRefGoogle Scholar
  121. 121.
    R.A. De Souza, The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3. Phys. Chem. Chem. Phys. 11(43), 9939 (2009)CrossRefGoogle Scholar
  122. 122.
    R.A. De Souza, F. Gunkel, S. Hoffmann-Eifert, R. Dittmann, Finite-size versus interface-proximity effects in thin-film epitaxial SrTiO3. Phys. Rev. B 89(24), 241401 (2014)CrossRefGoogle Scholar
  123. 123.
    H. Nili, S. Walia, A.E. Kandjani, R. Ramanathan, P. Gutruf, T. Ahmed, S. Balendhran, V. Bansal, D.B. Strukov, O. Kavehei, M. Bhaskaran, S. Sriram, Donor-induced performance tuning of amorphous SrTiO 3 memristive nanodevices: Multistate resistive switching and mechanical tunability. Adv. Funct. Mater. 25(21), 3172–3182 (2015)CrossRefGoogle Scholar
  124. 124.
    V. Metlenko, A.H.H. Ramadan, F. Gunkel, H. Du, H. Schraknepper, S. Hoffmann-Eifert, R. Dittmann, R. Waser, R.A. De Souza, Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3? Nanoscale 6(21), 12864–12876 (2014)CrossRefGoogle Scholar
  125. 125.
    A.M. Saranya, D. Pla, A. Morata, A. Cavallaro, J. Canales-Vázquez, J.A. Kilner, M. Burriel, A. Tarancón, Engineering mixed ionic electronic conduction in La 0.8 Sr 0.2 MnO 3+ δ nanostructures through fast grain boundary oxygen diffusivity. Adv. Energy Mater. 5(11), 1500377 (2015)CrossRefGoogle Scholar
  126. 126.
    S. Lee, A. Sangle, P. Lu, A. Chen, W. Zhang, J.S. Lee, H. Wang, Q. Jia, J.L. MacManus-Driscoll, Novel electroforming-free nanoscaffold memristor with very high uniformity, tunability, and density. Adv. Mater. 26(36), 6284–6289 (2014)CrossRefGoogle Scholar
  127. 127.
    X.G. Guo, X.S. Chen, Y.L. Sun, L.Z. Sun, X.H. Zhou, W. Lu, Electronic band structure of Nb doped SrTiO3 from first principles calculation. Phys. Lett. Sect. A Gen. At. Solid State Phys. 317(5–6), 501–506 (2003)Google Scholar
  128. 128.
    T. Harada, I. Ohkubo, K. Tsubouchi, H. Kumigashira, T. Ohnishi, M. Lippmaa, Y. Matsumoto, H. Koinuma, M. Oshima, Trap-controlled space-charge-limited current mechanism in resistance switching at Al∕Pr[sub 0.7]Ca[sub 0.3]MnO[sub 3] interface. Appl. Phys. Lett. 92, 222113 (2008)CrossRefGoogle Scholar
  129. 129.
    D.S. Kim, C.E. Lee, Y.H. Kim, Y.T. Kim, Effect of oxygen annealing on Pr0.7Ca0.3MnO 3 thin film for colossal electroresistance at room temperature. J. Appl. Phys. 100(9), 0–4 (2006)Google Scholar
  130. 130.
    T. Yamamoto, R. Yasuhara, I. Ohkubo, H. Kumigashira, M. Oshima, Formation of transition layers at metal perovskite oxide interfaces showing resistive switching behaviors. J. Appl. Phys. 110(5) (2011)Google Scholar
  131. 131.
    A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073 (2004)CrossRefGoogle Scholar
  132. 132.
    R. Yang, X.M. Li, W.D. Yu, X.J. Liu, X.D. Gao, Q. Wang, L.D. Chen, Resistance-switching properties of La0.67Ca 0.33MnO3 thin films with Ag-Al alloy top electrodes. Appl. Phys. A Mater. Sci. Process. 97(1), 85–90 (2009)CrossRefGoogle Scholar
  133. 133.
    R. Dong, W.F. Xiang, D.S. Lee, S.J. Oh, D.J. Seong, S.H. Heo, H.J. Choi, M.J. Kwon, M. Chang, M. Jo, M. Hasan, H. Hwang, Improvement of reproducible hysteresis and resistive switching in metal- La0.7 Ca0.3 Mn O3 -metal heterostructures by oxygen annealing. Appl. Phys. Lett. 90(18), 10–13 (2007)Google Scholar
  134. 134.
    A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88(23), 232112 (2006)CrossRefGoogle Scholar
  135. 135.
    N.H. Chan, R.K. Sharma, D.M. Smyth, Nonstoichiometry in acceptor-doped BaTi03. J. Am. Ceram. Soc. 65(3), 167–170 (1981)CrossRefGoogle Scholar
  136. 136.
    T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, Y. Tokura, Electrical properties and colossal electroresistance of heteroepitaxial SrRu O3/Sr Ti1-x Nbx O3 Schottky junctions. Phys. Rev. B: Condens. Matter Mater. Phys. 75(16), 16–21 (2007)CrossRefGoogle Scholar
  137. 137.
    T. You, X. Ou, G. Niu, F. Bärwolf, G. Li, N. Du, D. Bürger, I. Skorupa, Q. Jia, W. Yu, X. Wang, O.G. Schmidt, H. Schmidt, Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes. Sci. Rep. 5, 18623 (2015)CrossRefGoogle Scholar
  138. 138.
    Z. Xu, K. Jin, L. Gu, Y. Jin, C. Ge, C. Wang, H. Guo, H. Lu, R. Zhao, G. Yang, Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories. Small 8(8), 1279–1284 (2012)CrossRefGoogle Scholar
  139. 139.
    S. Zhong, Y. Cui, Metal and annealing atmospheres dependence of resistive switching in metal / Nb 0 . 7wt % -SrTiO 3 interfaces. Curr. Appl. Phys. 13(5), 913–918 (2013)CrossRefGoogle Scholar
  140. 140.
    A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073–4075 (2004)CrossRefGoogle Scholar
  141. 141.
    R. Ortega-Hernandez, M. Coll, J. Gonzalez-Rosillo, A. Palau, X. Obradors, E. Miranda, T. Puig, J. Suñe, Resistive switching in CeO2/La0.8Sr0.2MnO3 bilayer for non-volatile memory applications. Microelectron. Eng. 147, 37–40 (2015)CrossRefGoogle Scholar
  142. 142.
    H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48(11), 4729–4733 (1977)CrossRefGoogle Scholar
  143. 143.
    C. Park, Y. Seo, J. Jung, D.-W. Kim, Electrode-dependent electrical properties of metal/Nb-doped SrTiO[sub 3] junctions. J. Appl. Phys. 103(5), 54106 (2008)CrossRefGoogle Scholar
  144. 144.
    T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86(1), 7–10 (2005)CrossRefGoogle Scholar
  145. 145.
    H.-S. Lee, J.A. Bain, S. Choi, P.A. Salvador, Electrode influence on the transport through SrRuO3 ∕ Cr-doped SrZrO3/metal junctions. Appl. Phys. Lett. 90(20) (2007)Google Scholar
  146. 146.
    C.R. Crowell, The Richardson constant for thermionic emission in Schottky barrier diodes. Solid State Electron. 8(4), 395–399 (1965)CrossRefGoogle Scholar
  147. 147.
    Z.T. Xu, K.J. Jin, L. Gu, Y.L. Jin, C. Ge, C. Wang, H.Z. Guo, H. Bin Lu, R.Q. Zhao, G.Z. Yang, Evidence for a crucial role played by oxygen vacancies in LaMnO 3 resistive switching memories. Small 8(8), 1279–1284 (2012)CrossRefGoogle Scholar
  148. 148.
    E.M. Bourim, Y. Kim, D. Kim, Interface state effects on resistive switching behaviors of Pt / Nb-doped SrTiO 3 single-crystal Schottky junctions. ECS J. Solid State Sci. Technol. 3(7), N95–N101 (2014)CrossRefGoogle Scholar
  149. 149.
    F. Messerschmitt, M. Kubicek, J.L.M. Rupp, How does moisture affect the physical property of Memristance for anionic-electronic resistive switching memories? Adv. Funct. Mater. 25(32), 5117–5125 (2015)CrossRefGoogle Scholar
  150. 150.
    Z. Chen, C. Lu, Humidity sensors: A review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005)CrossRefGoogle Scholar
  151. 151.
    International Technology Roadmap for Semiconductors 2.0. Section 6: Beyond CMOS (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University Grenoble Alpes, CNRS, LMGPGrenobleFrance

Personalised recommendations