Advertisement

Journal of Electroceramics

, Volume 39, Issue 1–4, pp 137–142 | Cite as

Effect of O2- migration in Pt/HfO2/Ti/Pt structure

  • Maxime Thammasack
  • Giovanni De Micheli
  • Pierre-Emmanuel Gaillardon
Article

Abstract

In this paper, we study the post-fabrication phenomenon of natural oxidation of the Ti layer observed in a Pt/HfO2/Ti/Pt Resistive Random Access Memory (OxRRAM) stack with no external influence. We identify that the resistance ratio decreases by 100 × in a month time period due to the natural oxidation of the Ti layer in contact of the HfO2 layer. We then propose two paths to control both the final properties of the device and the aging process. The first approach consists in carefully optimizing the thickness of the Ti layer to reduce the aging effect. However, the resistance ratio is proportional to the thickness of the layer, leading to an unwanted trade-off between device properties and aging effect. The second approach consists in adding a TiO2 inter-layer, creating a Pt/HfO2/TiO2/Ti/Pt OxRRAM stack that is more stable over time with similar resistive states. The obtained OxRRAM stack presents a resistance ratio in the order of 104 with no observable post-fabrication aging degradation.

Keywords

Oxide-based memories RRAMs XPS Aging 

Notes

Acknowledgements

The authors would like to acknowledge Pierre Mettraux for his help on XPS analysis, as well as the CMi (EPFL) and Nanofab (UofU) staffs for the help in cleanroom.

References

  1. 1.
    G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, An overview of candidate device technologies for Storage-Class Memory. IBM J. Res. Dev. 52(4/5), 449–464 (2008)CrossRefGoogle Scholar
  2. 2.
    M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, A Fast, High-Endurance and Scalable Non-Volatile Memory Device Made from Asymmetric Ta2 O 5 /TaO2 Bilayer Structures. Nat. Mater. 10, 625–630 (2011)CrossRefGoogle Scholar
  3. 3.
    C. Kugeler, C. Nauenheim, M. Meier, A. Rudiger, R. Waser, Fast resistance switching of TiO2 and MSQ thin films for non-volatile memory applications (OxRRAM), Non-Volatile Memory Technology Symposium (2008)Google Scholar
  4. 4.
    S. Zuloaga, L. Rui, C. Pai-Yu, Y. Shimeng Yu, Scaling 2-Layer OxRRAM Cross-Point Array Towards 10 Nm Node: A device-circuit co-design, IEEE International Symposium on Circuits and Systems (2015)Google Scholar
  5. 5.
    R. Waser, M. Aono, Nanoionics-Based Resistive switching memories. Nat. Mater. 6, 833–840 (2007)CrossRefGoogle Scholar
  6. 6.
    P.-E. Gaillardon, X. Tang, J. Sandrini, M. Thammasack, S. Rahimian Omam, D. Sacchetto, Y. Leblebici, G. De Micheli, A Ultra-Low-Power FPGA Based on Monolithically Integrated OxRRAMs, Design, Automation and Test in Europe Conference (2015)Google Scholar
  7. 7.
    T. Chang, Y. Yang, W. Lu, Building neuromorphic circuits with memristive devices. IEEE Circuits Syst. Mag. 13(2), 56–73 (2013)CrossRefGoogle Scholar
  8. 8.
    H.S.P. Wong, H.-Y. lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal-oxide OxRRAM. Proc. IEEE. 100(6), 1951–1970 (2012)CrossRefGoogle Scholar
  9. 9.
    I. Valov, Redox-Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale. ChemElectroChem. 1(1), 26–36 (2014)CrossRefGoogle Scholar
  10. 10.
    D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, Atomic Structure of Conducting Nanofilaments in TiO2 Resistive Switching Memory. Nat. Nanotechnol. 5, 148–153 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Ji, J. Hu, M. Lanza, A future way of storing information: Resistive random access memory. IEEE Nanotechnol. Mag. 9(1), 12–17 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Akinaga, H. Shima, Resistive random access memory (reRAM) based on metal oxides. Proc. of the IEEE. 98(12), 2237–2251 (2010)CrossRefGoogle Scholar
  13. 13.
    F.M. Puglisi, L. Larcher, A. Padovani, P. Pavan, Bipolar Resistive RAM Based on HfO2: Physics, Compact Modeling, and Variability Control, IEEE Journal on Emerging and Selected Topics in Circuits and Systems (2016)Google Scholar
  14. 14.
    C. Cagli, J. Buckley, V. Jousseaume, T. Cabout, A. Salaun, H. Grampeix, J.F. Nodin, H. Feldis, A. Persico, J. Cluzel, P. Lorenzi, L. Massari, R. Rao, F. Irrera, F. Aussenac, C. Carabasse, M. Coue, P. Calka, E. Martinez, L. Perniola, P. Blaise, Z. Fang, Y.H. Yu, G. Ghibaudo, D. Deleruyelle, M. Bocquet, ller Mü C., A. Padovani, O. Pirrotta, L. Vandelli, L. Larcher, G. Reimbold, B. de Salvo, Experimental and theoretical study of electrode effects in HfO2 based RRAM, International Electron Devices Meeting 28.7.1–28.7.4 (2011)Google Scholar
  15. 15.
    R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)CrossRefGoogle Scholar
  16. 16.
    M.A. Villena, M.B. Gonzalez, J.B. Roldan, An in-Depth Study of Thermal Effects in Reset Transitions in HfO2 Based OxRRAMs. Solid State Electron. 111, 47–51 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Long, L. Perniola, C. Cagli, J. Buckley, X. Lian, E. Miranda, F. Pan, M. Liu, J. Sune, Voltage and Power-Controlled Regimes in the Progressive Unipolar RESET Transition of HfO2-Based OxRRAM. Sci. Rep. 3, 2929 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Maxime Thammasack
    • 1
    • 2
  • Giovanni De Micheli
    • 1
  • Pierre-Emmanuel Gaillardon
    • 2
  1. 1.Integrated Systems Laboratory, EPFL, CHLausanneSwitzerland
  2. 2.ECEUniversity of UtahSalt Lake CityUSA

Personalised recommendations