Journal of Electroceramics

, Volume 39, Issue 1–4, pp 73–93 | Cite as

Probing electrochemistry at the nanoscale: in situ TEM and STM characterizations of conducting filaments in memristive devices

  • Yuchao YangEmail author
  • Yasuo TakahashiEmail author
  • Atsushi Tsurumaki-Fukuchi
  • Masashi AritaEmail author
  • M. MoorsEmail author
  • M. Buckwell
  • A. Mehonic
  • A. J. KenyonEmail author


Memristors or memristive devices are two-terminal nanoionic systems whose resistance switching effects are induced by ion transport and redox reactions in confined spaces down to nanometer or even atomic scales. Understanding such localized and inhomogeneous electrochemical processes is a challenging but crucial task for continued applications of memristors in nonvolatile memory, reconfigurable logic, and brain inspired computing. Here we give a survey for two of the most powerful technologies that are capable of probing the resistance switching mechanisms at the nanoscale – transmission electron microscopy, especially in situ, and scanning tunneling microscopy, for memristive systems based on both electrochemical metallization and valence changes. These studies yield rich information about the size, morphology, composition, chemical state and growth/dissolution dynamics of conducting filaments and even individual metal nanoclusters, and have greatly facilitated the understanding of the underlying mechanisms of memristive switching. Further characterization of cyclic operations leads to additional insights into the degradation in performance, which is important for continued device optimization towards practical applications.


Resistive random access memory Conducting filament Transmission electron microscopy Scanning tunneling microscopy In situ Electrochemical reactions 



Y.Y. acknowledges financial support from National Science Foundation of China (61674006, 61421005, 61376087 and 61574007), Beijing Municipal Science & Technology Commission Program (Z161100000216148) as well as the “1000 Youth Talents Program” of China and also thanks Mr. Jingxian Li for his assistance. M.B., A.M. and A.J.K. gratefully acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC). Y.T., A.T.F. and M.A. acknowledge financial support from the Japan Society for the Promotion of Science (JSPS, KAKENHI, 15H01706, 16H0433906 and 16 K18073). Y.Y. prepared sections 1-2. Y.T., A.T.F. and M.A. prepared sections 3-4. M.M., M.B., A.M. and A.J.K. prepared section 5. All authors contributed to section 6, revised and discussed the whole manuscript at all stages.


  1. 1.
    L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  2. 2.
    R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)CrossRefGoogle Scholar
  3. 3.
    H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Proc. IEEE 100, 1951 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Nature 464, 873 (2010)CrossRefGoogle Scholar
  5. 5.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)CrossRefGoogle Scholar
  6. 6.
    I. Valov, W.D. Lu, Nanoscale 8, 13828 (2016)CrossRefGoogle Scholar
  7. 7.
    K. Sozt, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)CrossRefGoogle Scholar
  8. 8.
    K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Nat. Commun. 3, 732 (2012)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W.D. Lu, Nat. Commun. 5, 4232 (2014)Google Scholar
  11. 11.
    D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Arita, A. Takahashi, Y. Ohno, A. Nakane, A. Tsurumaki-Fukuchi, Y. Takahashi, Sci. Rep. 5, 17103 (2015)CrossRefGoogle Scholar
  13. 13.
    Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Adv. Mater. 24, 1844 (2012)CrossRefGoogle Scholar
  14. 14.
    X.Z. Tian, S.Z. Yang, M. Zeng, L.F. Wang, J.K. Wei, Z. Xu, W.L. Wang, X.D. Bai, Adv. Mater. 26, 3649 (2014)CrossRefGoogle Scholar
  15. 15.
    W.A. Hubbard, A. Kerelsky, G. Jasmin, E.R. White, J. Lodico, M. Mecklenburg, B.C. Regan, Nano Lett. 15, 3983 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Yang, W.D. Lu, IEEE Trans. Nanotechnol. 15, 465 (2016)CrossRefGoogle Scholar
  17. 17.
    T. Fujii, M. Arita, Y. Takahashi, I. Fujiwara, Appl. Phys. Lett. 98, 212104 (2011)CrossRefGoogle Scholar
  18. 18.
    Z. Xu, Y. Bando, W.L. Wang, X.D. Bai, D. Golberg, ACS Nano 4, 2515 (2010)CrossRefGoogle Scholar
  19. 19.
    L. Chen, Z.G. Liu, Y.D. Xia, K.B. Yin, L.G. Gao, J. Yin, Appl. Phys. Lett. 94, 162112 (2009)CrossRefGoogle Scholar
  20. 20.
    S.-J. Choi, G.-S. Park, K.-H. Kim, S. Cho, W.-Y. Yang, X.-S. Li, J.-H. Moon, K.-J. Lee, K. Kim, Adv. Mater. 23, 3272 (2011)CrossRefGoogle Scholar
  21. 21.
    X. Guo, C. Schindler, S. Menzel, R. Waser, Appl. Phys. Lett. 91, 133513 (2007)CrossRefGoogle Scholar
  22. 22.
    K. Krishnan, T. Tsuruoka, C. Mannequin, M. Aono, Adv. Mater. 28, 640 (2016)CrossRefGoogle Scholar
  23. 23.
    T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Appl. Phys. Lett. 91, 092110 (2007)CrossRefGoogle Scholar
  24. 24.
    Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Nano Lett. 9, 1636 (2009)CrossRefGoogle Scholar
  25. 25.
    C.P. Hsiung, H.W. Liao, J.Y. Gan, T.B. Wu, J.C. Hwang, F. Chen, M.J. Tsai, ACS Nano 4, 5414 (2010)CrossRefGoogle Scholar
  26. 26.
    I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Nanotechnology 22, 254003 (2011)CrossRefGoogle Scholar
  27. 27.
    J. Sun, Q. Liu, H.W. Xie, X. Wu, F. Xu, T. Xu, S.B. Long, H.B. Lv, Y.T. Li, L.T. Sun, M. Liu, Appl. Phys. Lett. 102, 053502 (2013)CrossRefGoogle Scholar
  28. 28.
    Z. Wang, H. Jiang, M. Hyung Jang, P. Lin, A. Ribbe, Q. Xia, J.J. Yang, Nanoscale 8, 14023 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Gao, C. Song, C. Chen, F. Zeng, F. Pan, Appl. Phys. Lett. 102, 141606 (2013)CrossRefGoogle Scholar
  30. 30.
    T. Fujii, M. Arita, Y. Takahashi, I. Fujiwara, J. Mater. Res. 27, 886 (2012)CrossRefGoogle Scholar
  31. 31.
    M. Arita, Y. Ohno, Y. Murakami, K. Takamizawa, A. Tsurumaki-Fukuchi, Y. Takahashi, Nanoscale 8, 14754 (2016)CrossRefGoogle Scholar
  32. 32.
    M. Kudo, Y. Ohno, K. Hamada, M. Arita, Y. Takahashi, ECS Trans. 58, 19 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Kudo, M. Arita, Y. Ohno, Y. Takahashi, Appl. Phys. Lett. 105, 173504 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Arita, Y. Ohno, Y. Takahashi, Phys. Status Solidi A 213, 306 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Kudo, M. Arita, Y. Ohno, T. Fujii, K. Hamada, Y. Takahashi, Thin Solid Films 533, 48 (2013)CrossRefGoogle Scholar
  36. 36.
    N. Banno, T. Sakamoto, N. Iguchi, H. Sunamura, K. Terabe, T. Hasegawa, M. Aono, IEEE Trans. Electron Devices 55, 3283 (2008)CrossRefGoogle Scholar
  37. 37.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)CrossRefGoogle Scholar
  38. 38.
    L.A. Escobar, W.Q. Meeker, Statist. Sci. 21, 552 (2006)CrossRefGoogle Scholar
  39. 39.
    M. Kudo, M. Arita, Y. Takahashi, K. Ohba, M. Shimuta, I. Fujiwara, Proc. 7th Internat. Memory Workshop (IMW), IEEE, Piscataway, 85 (2015). doi:  10.1109/IMW.2015.7150312.
  40. 40.
    J. Zahurak, K. Miyata, M. Fischer, M. Balakrishnan, S. Chhajed, D. Wells, H. Li, A. Torsi, J. Lim, M. Korber, K. Nakazawa, S. Mayuzumi, M. Honda, S. Sills, S. Yasuda, A. Calderoni, B. Cook, G. Damarla, H. Tran, B. Wang, C. Cardon, K. Karda, J. Okuno, A. Johnson, T. Kunihiro, J. Sumino, M. Tsukamoto, K. Aratani, N. Ramaswamy, W. Otsuka, K. Prall, IEEE Int. Electron Devices Meet. 6.2.1/140 (2014).Google Scholar
  41. 41.
    Y. Takahashi, M. Kudo, M. Arita, ECS Trans. 69, 299 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Sawa, Mater. Today 11, 28 (2008)CrossRefGoogle Scholar
  43. 43.
    P.R. Mickel, A.J. Lohn, M.J. Marinella, Mod. Phys. Lett. B 28, 1430003 (2014)CrossRefGoogle Scholar
  44. 44.
    A. Mehonic, M. Buckwell, L. Montesi, M.S. Munde, D. Gao, S. Hudziak, R.J. Chater, S. Fearn, D. McPhail, M. Bosman, A.L. Shluger, A.J. Kenyon, Adv. Mater. 28, 7486 (2016)CrossRefGoogle Scholar
  45. 45.
    H. Schroeder, R. Pandian, J. Miao, Phys. Status Solidi A 208, 300 (2011)CrossRefGoogle Scholar
  46. 46.
    T. Fujii, M. Arita, K. Hamada, H. Kondo, H. Kaji, Y. Takahashi, M. Moniwa, I. Fujiwara, T. Yamaguchi, M. Aoki, Y. Maeno, T. Kobayashi, M. Yoshimaru, J. Appl. Phys. 109, 053702 (2011)CrossRefGoogle Scholar
  47. 47.
    T. Fujii, M. Arita, K. Hamada, Y. Takahashi, N. Sakaguchi, J. Appl. Phys. 113, 083701 (2013)CrossRefGoogle Scholar
  48. 48.
    Z. Fan, X.D. Fan, A. Li, L.X. Dong, Nanoscale 5, 12310 (2013)CrossRefGoogle Scholar
  49. 49.
    J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L.D. Kilcoyne, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 22, 3573 (2010)CrossRefGoogle Scholar
  50. 50.
    K.M. Kim, S.J. Song, G.H. Kim, J.Y. Seok, M.H. Lee, J.H. Yoon, J. Park, C.S. Hwang, Adv. Funct. Mater. 21, 1587 (2011)CrossRefGoogle Scholar
  51. 51.
    J.Y. Chen, C.L. Hsin, C.W. Huang, C.H. Chiu, Y.T. Huang, S.J. Lin, W.W. Wu, L.J. Chen, Nano Lett. 13, 3671 (2013)CrossRefGoogle Scholar
  52. 52.
    G.-S. Park, Y.B. Kim, S.Y. Park, X.S. Li, S. Heo, M.-J. Lee, M. Chang, J.H. Kwon, M. Kim, U.I. Chung, R. Dittmann, R. Waser, K. Kim, Nat. Commun. 4, 2382 (2013)Google Scholar
  53. 53.
    X. Wu, D. Cha, M. Bosman, N. Raghavan, D.B. Migas, V.E. Borisenko, X.-X. Zhang, K. Li, K.-L. Pey, J. Appl. Phys. 113, 114503 (2013)CrossRefGoogle Scholar
  54. 54.
    Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, K. Aono, IEEE Int. Electron Devices Meet. 31.4.1/721 (2011)Google Scholar
  55. 55.
    C. Li, Y. Yao, X. Shen, Y.G. Wang, J.J. Li, C.Z. Gu, R.C. Yu, Q. Liu, M. Liu, Nano Res. 8, 3571 (2015)CrossRefGoogle Scholar
  56. 56.
    T. Fujii, H. Kaji, H. Kondo, K. Hamada, M. Arita, Y. Takahashi, IOP Conf. Ser. Mater. Sci. Eng. 8, 012033 (2010)Google Scholar
  57. 57.
    Y. Yang, W. Lü, Y. Yao, J. Sun, C. Gu, L. Gu, Y. Wang, X. Duan, R. Yu, Sci. Rep. 4, 3890 (2014)CrossRefGoogle Scholar
  58. 58.
    J. Norpoth, S. Mildner, M. Scherff, J. Hoffmann, C. Jooss, Nanoscale 6, 9852 (2014)CrossRefGoogle Scholar
  59. 59.
    C. Jooss, J. Hoffmann, J. Fladerer, M. Ehrhardt, T. Beetz, L. Wu, Y. Zhu, Phys. Rev. B 77, 132409 (2008)CrossRefGoogle Scholar
  60. 60.
    Z. Liao, P. Gao, X. Bai, D. Chen, J. Zhang, J. Appl. Phys. 111, 114506 (2012)CrossRefGoogle Scholar
  61. 61.
    P. Gao, Z.Z. Wang, W.Y. Fu, Z.L. Liao, K.H. Liu, W.L. Wang, X.D. Bai, E. Wang, Micron 41, 301 (2010)CrossRefGoogle Scholar
  62. 62.
    J. Kwon, M. Skowronski, A.A. Sharma, J.A. Bain, IEEE Internat. Reliability Phys. Symp. 5E, 5 (2014). doi: 10.1109/IRPS.2014.6860680 Google Scholar
  63. 63.
    M. Buckwell, L. Montesi, S. Hudziak, A. Mehonic, A.J. Kenyon, Nanoscale 7, 18030 (2015)CrossRefGoogle Scholar
  64. 64.
    M.P. Murrell, M.E. Welland, S.J. O’Shea, T.M.H. Wong, J.R. Barnes, A.W. McKinnon, M. Heyns, S. Verhaverbeke, Appl. Phys. Lett. 62, 786 (1993)CrossRefGoogle Scholar
  65. 65.
    M. Lanza, Materials 7, 2155 (2014)CrossRefGoogle Scholar
  66. 66.
    U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Nano Lett. 14, 2401 (2014)CrossRefGoogle Scholar
  67. 67.
    J. Hou, B. Rouxel, W. Qin, S. Nonnenmann, D.A. Bonnell, Nanotechnol. 24, 395703 (2013)CrossRefGoogle Scholar
  68. 68.
    B. Singh, D. Varandani, B.R. Mehta, Appl. Phys. Lett. 103, 051604 (2013)CrossRefGoogle Scholar
  69. 69.
    A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, I. Valov, Nat. Nanotechnol. 11, 67 (2016)CrossRefGoogle Scholar
  70. 70.
    I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Nat. Mater. 11, 530 (2012)CrossRefGoogle Scholar
  71. 71.
    Y.L. Chen, J. Wang, C.M. Xiong, R.F. Dou, J.Y. Yang, J.C. Nie, J. Appl. Phys. 112, 023703 (2012)CrossRefGoogle Scholar
  72. 72.
    M.K. Hota, M.K. Bera, S. Verma, C.K. Maiti, Thin Solid Films 520, 6648 (2012)CrossRefGoogle Scholar
  73. 73.
    M. Moors, K.K. Adepalli, Q. Lu, A. Wedig, C. Bäumer, K. Skaja, B. Arndt, H.L. Tuller, R. Dittmann, R. Waser, B. Yildiz, I. Valov, ACS Nano 10, 1481 (2016)CrossRefGoogle Scholar
  74. 74.
    H. Watanabe, K. Fujita, M. Ichikawa, Appl. Phys. Lett. 72, 1987 (1998)CrossRefGoogle Scholar
  75. 75.
    H. Watanabe, T. Baba, M. Ichikawa, J. Appl. Phys. 85, 6704 (1999)CrossRefGoogle Scholar
  76. 76.
    N.P. Magtoto, C. Niu, B.M. Ekstrom, S. Addepalli, J.A. Kelber, Appl. Phys. Lett. 77, 2228 (2000)CrossRefGoogle Scholar
  77. 77.
    O. Kurnosikov, F.C. de Nooij, P. LeClair, J.T. Kohlhepp, B. Koopmans, H.J.M. Swagten, W.J.M. de Jonge, Phys. Rev. B 64, 153407 (2001)CrossRefGoogle Scholar
  78. 78.
    M.K. Hota, C. Mukherjee, T. Das, C.K. Maiti, ECS J. Solid State Sci. Technol. 1, N149 (2012)CrossRefGoogle Scholar
  79. 79.
    R.J. Hamers, R.M. Tromp, J.E. Demuth, Phys. Rev. Lett. 56, 1972 (1986)CrossRefGoogle Scholar
  80. 80.
    K. Shubhakar, K.L. Pey, S.S. Kushvaha, S.J. O’Shea, N. Raghavan, M. Bosman, M. Kouda, K. Kakushima, H. Iwai, Appl. Phys. Lett. 98, 072902 (2011)CrossRefGoogle Scholar
  81. 81.
    A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbé, B. Garrido, R. Rizk, A.J. Kenyon, J. Appl. Phys. 111, 074507 (2012)CrossRefGoogle Scholar
  82. 82.
    A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, C. Labbé, R. Rizk, A.J. Kenyon, Nanotechnol. 23, 455201 (2012)CrossRefGoogle Scholar
  83. 83.
    A. Plecenik, M. Tomasek, T. Plecenik, M. Truchly, J. Noskovic, M. Zahoran, T. Roch, M. Belogolovskii, M. Spankova, S. Chromik, P. Kus, Appl. Surf. Sci. 256, 5684 (2010)CrossRefGoogle Scholar
  84. 84.
    A. Narlikar, Studies of high temperature superconductors (Nova Sci. Publ, New York, 1996)Google Scholar
  85. 85.
    V. Dubost, T. Cren, C. Vaju, L. Cario, B. Corraze, E. Janod, F. Debontridder, D. Roditchev, Nano Lett. 13, 3648 (2013)CrossRefGoogle Scholar
  86. 86.
    A. Gambardella, M. Prezioso, M. Cavallini, Sci. Rep. 4, 4196 (2014)CrossRefGoogle Scholar
  87. 87.
    M.K. Hota, M.K. Bera, C.K. Maiti, Nanosci. Nanotechnol. Lett. 4, 394 (2012)CrossRefGoogle Scholar
  88. 88.
    S. Chakrabarti, A.J. Pal, Nanoscale 7, 9886 (2015)CrossRefGoogle Scholar
  89. 89.
    M. Meyyappan, J. Phys. D. Appl. Phys. 42, 213001 (2009)CrossRefGoogle Scholar
  90. 90.
    O.A. Ageev, Y.F. Blinov, O.I. Il’in, A.S. Kolomiitsev, B.G. Konoplev, M.V. Rubashkina, V.A. Smirnov, A.A. Fedotov, Tech. Phys. 58, 1831 (2013)CrossRefGoogle Scholar
  91. 91.
    O.A. Ageev, Y.F. Blinov, O.I. Il’in, B.G. Konoplev, M.V. Rubashkina, V.A. Smirnov, A.A. Fedotov, Phys. Solid State 57, 825 (2015)CrossRefGoogle Scholar
  92. 92.
    F. Messerschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp, Adv. Funct. Mater. 24, 7448 (2015)CrossRefGoogle Scholar
  93. 93.
    M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp, ACS Nano 9, 10737 (2015)CrossRefGoogle Scholar
  94. 94.
    S. Menzel, S. Tappertzhofen, R. Waser, I. Valov, Phys. Chem. Chem. Phys. 15, 6945 (2013)CrossRefGoogle Scholar
  95. 95.
    F. Messerschmitt, M. Kubicek, J.L.M. Rupp, Adv. Funct. Mater. 25, 5117 (2015)CrossRefGoogle Scholar
  96. 96.
    S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, M. Aono, ACS Nano 7, 6396 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Key Laboratory of Microelectronic Devices and Circuits (MOE), Institute of MicroelectronicsPeking UniversityBeijingChina
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  3. 3.Peter Grünberg InstituteForschungszentrum JülichJülichGermany
  4. 4.Department of Electronic & Electrical EngineeringUniversity College LondonLondonUK

Personalised recommendations