Advertisement

Journal of Electroceramics

, Volume 39, Issue 1–4, pp 143–156 | Cite as

Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer

  • Tohru Tsuruoka
  • Tsuyoshi Hasegawa
  • Kazuya Terabe
  • Masakazu Aono
Article

Abstract

Atomic switches are nanoionic devices that are operated by controlling redox reactions and the local migration of metal ions in solids. The essential mechanism is the growth and shrinkage of a metal filament formed between two electrodes, resulting in repeatable resistive switching between high-resistance and low-resistance states, which can be used for next-generation nonvolatile memories. This review focuses on the operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer as an ion-conducting matrix. First, we describe the operating mechanism of a two-terminal atomic switch based on nucleation theory and present the results of temperature dependence and switching speeds to determine the validity of our switching model. Then, we discuss the effects that moisture absorption in the oxide matrix has on the fundamental processes and switching behavior in order to elucidate the importance of the porosity of the oxide matrix. Finally, we demonstrate a three-terminal atomic switch and describe the impact of the anode material or metal-ion species. These findings will contribute to the development of next-generation logic circuits with low-voltage operation and low-power consumption.

Keywords

Atomic switch Metal oxides Resistive switching Redox reactions Metal ion transport Moisture absorption Atom transistor 

Notes

Acknowledgements

We would like to thank to our many collaborators, specially Y. Itoh, Q. Wang, H. Tanaka, S. Yamaguchi, S. Watanabe, H. Mizuta, I. Valov, and R. Waser. This research was supported in part by the Key-Technology Research Project from MEXT, CREST and the strategic Japanese-German Cooperative Program from JST, the WPI Research Center Initiative from MEXT, and a Grant-in-Aid for Scientific Research (B) (JSPS KAKENHI Grant Number 24350278 and 24310107) from MEXT.

Supplementary material

10832_2016_63_MOESM1_ESM.docx (703 kb)
ESM 1 (DOCX 702 kb)

References

  1. 1.
    G.E. Moore, Electronics Magazine 38 (1965)Google Scholar
  2. 2.
    International Technology Roadmap for Semiconductors, ITRS 2013 edn (2013), http://www.itrs.net/2013-itrs.html
  3. 3.
    G. Atwood, IEEE Trans. Device Mater. Relat. 4, 301 (2004)CrossRefGoogle Scholar
  4. 4.
    R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)CrossRefGoogle Scholar
  5. 5.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Nili, S. Walia, S. Balendhran, D. Strukov, M. Bhaskaran, S. Sriram, Adv. Funct. Mater. 24, 6741 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Masserschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp, Adv. Funct. Mater. 24, 7448 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Kubicek, R. Schmitt, F. Masserchmitt, J.L.M. Rupp, ACS Nano 9, 10737 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005)CrossRefGoogle Scholar
  10. 10.
    T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Nat. Mater. 10, 591 (2011)CrossRefGoogle Scholar
  11. 11.
    T. Ohno, T. Hasegawa, A. Nayak, T. Tsuruoka, J.K. Gimzewski, M. Aono, Appl. Phys. Lett. 99, 203108 (2011)CrossRefGoogle Scholar
  12. 12.
    T. Hasegawa, K. Terabe, T. Tsuruoka, M. Aono, Adv. Mater. 24, 252 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa, J.K. Gimzewski, M. Aono, Adv. Funct. Mater. 22, 3606 (2012)CrossRefGoogle Scholar
  14. 14.
    T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, M. Aono, Appl. Phys. Lett. 82, 3032 (2003)CrossRefGoogle Scholar
  15. 15.
    C.H. Liang, K. Terabe, T. Hasegawa, R. Negishi, T. Tamura, M. Aono, Small 1, 971 (2005)CrossRefGoogle Scholar
  16. 16.
    C.H. Liang, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 18, 485202 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Morales-Masis, S.J. van der Molen, W.T. Fu, M.B. Haselberth, J.M. van Ruithenbeek, Nanotechnology 20, 095710 (2009)CrossRefGoogle Scholar
  18. 18.
    T. Tsuchiya, Y. Oyama, S. Miyoshi, S. Yamaguchi, Appl. Phys. Express 2, 055002 (2009)CrossRefGoogle Scholar
  19. 19.
    M.N. Kozicki, M. Park, M. Mitkova, IEEE Trans. Nanotechnol. 4, 331 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Tappertzhofen, I. Valov, R. Waser, Nanotechnology 23, 145703 (2012)CrossRefGoogle Scholar
  21. 21.
    H.X. Duo, L.G. Gao, Y.D. Xia, K. Jiang, B. Xu, Z.G. Liu, J. Yin, Appl. Phys. Lett. 94, 153504 (2009)CrossRefGoogle Scholar
  22. 22.
    T. Hasegawa, K. Terabe, T. Sakamoto, M. Aono, MRS Bull. 34, 929 (2009)CrossRefGoogle Scholar
  23. 23.
    I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Nanotechnology 22, 254002 (2011)CrossRefGoogle Scholar
  24. 24.
    T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Appl. Phys. Lett. 91, 092110 (2007)CrossRefGoogle Scholar
  25. 25.
    C. Schindler, M. Weides, M.N. Kozichi, R. Waser, Appl. Phys. Lett. 92, 122910 (2008)CrossRefGoogle Scholar
  26. 26.
    C. Schindler, G. Staikov, R. Waser, Appl. Phys. Lett. 94, 072109 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Haemori, T. Nagata, T. Chikyo, Appl. Phys. Express 2, 061401 (2009)CrossRefGoogle Scholar
  28. 28.
    M.N. Kozicki, C. Gapalan, M. Balakrishnan, M. Mitkova, IEEE Trans. Nanotechnol. 5535 (2006)Google Scholar
  29. 29.
    W. Gua, M. Liu, S. Long, Q. Liu, W. Wang, Appl. Phys. Lett. 93, 223506 (2008)CrossRefGoogle Scholar
  30. 30.
    X.B. Yan, K. Li, J. Yin, Y.D. Xia, H.X. Guo, L. Chen, Z.G. Liu, Solid State Lett. 13, H87 (2010)CrossRefGoogle Scholar
  31. 31.
    T. Tsuruoka, I. Valov, S. Tappertzhofen, J. van den Hurk, T. Hasegawa, R. Waser, M. Aono, Adv. Funct. Mater. 25, 6374 (2015)CrossRefGoogle Scholar
  32. 32.
    T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 21, 425205 (2010)CrossRefGoogle Scholar
  33. 33.
    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Nat. Commun. 3, 732 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W.D. Lu, Nat. Commun. 5, 4232 (2014)Google Scholar
  35. 35.
    Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Adv. Mater. 24, 1844 (2012)CrossRefGoogle Scholar
  36. 36.
    X. Tian, S. Yang, M. Zeng, L. Wang, J. Wei, Z. Xu, W. Wang, X. Bai, Adv. Mater. 26, 3649 (2014)CrossRefGoogle Scholar
  37. 37.
    T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 22, 254013 (2011)CrossRefGoogle Scholar
  38. 38.
    W.D. Kingley, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics, 2nd edn. (Wiley, New York, 1976)Google Scholar
  39. 39.
    A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New York, 2001)Google Scholar
  40. 40.
    A. Milchev, Electrocrystallization: fundamentals of nucleation and growth (Kluwer Academic, Boston, 2002)Google Scholar
  41. 41.
    N.F. Mott, R.W. Gurny, Electronic processes in ionic crystals (Oxford University Press, Oxford, 1948)Google Scholar
  42. 42.
    J.J. O’wyer, The theory of electrical conduction and breakdown in solid dielectrics (Clarendon, Oxford, 1973)Google Scholar
  43. 43.
    Y. Sato, K. Kinoshita, M. Aoki, Y. Sugiyama, Appl. Phys. Lett. 90, 033503 (2007)CrossRefGoogle Scholar
  44. 44.
    I. Valov, G. Staikov, J. Solid State Electrochem. 17, 365 (2013)CrossRefGoogle Scholar
  45. 45.
    I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, R. Waser, Nat. Mater. 11, 530 (2012)CrossRefGoogle Scholar
  46. 46.
    M.G. Gao, Y.S. Chen, J.R. Sun, D.S. Shang, L.F. Liu, J.F. Kang, B.G. Shen, Appl. Phys. Lett. 101, 203502 (2012)CrossRefGoogle Scholar
  47. 47.
    P. Shestha, A. Ochia, K.P. Cheung, J.P. Campbell, H. Braumgart, G. Harris, Electrochem. Solid-State Lett. 15, H173 (2012)Google Scholar
  48. 48.
    D. Ielmini, C. Cagli, F. Nardi, Appl. Phys. Lett. 94, 063511 (2009)CrossRefGoogle Scholar
  49. 49.
    J. Shin, J. Park, J. Lee, S. Park, S. Kim, W. Lee, I. Kim, D. Lee, H. Hwang, IEEE Electron Device Lett. 32, 958 (2011)CrossRefGoogle Scholar
  50. 50.
    M. Noman, A.A. Sharma, Y.M. Lu, M. Skowronski, P.A. Salvador, J.A. Bain, Appl. Phys. Lett. 102, 023507 (2012)CrossRefGoogle Scholar
  51. 51.
    T. Tsuruoka, T. Hasegawa, I. Valov, R. Waser, M. Aono, AIP Adv. 3, 032114 (2013)CrossRefGoogle Scholar
  52. 52.
    T. Tsuruoka, T. Hasegawa, M. Aono, Mater. Res. Soc. Symp. Proc. 1729 (2015)Google Scholar
  53. 53.
    A.C. Torrezan, J.P. Strachan, G. Modeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 485203 (2011)CrossRefGoogle Scholar
  54. 54.
    E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical phase formation and growth (VCH, Wheinhein, 1996)CrossRefGoogle Scholar
  55. 55.
    R. Soni, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, IEEE Trans. Electron Devices 56, 1040 (2009)CrossRefGoogle Scholar
  56. 56.
    J.M. Ngaruiya, S. Venkataraj, R. Drese, O. Kappertz, T.P.L. Pedersen, M. Wuttig, Phys. Status Solidi A 198, 99 (2003)CrossRefGoogle Scholar
  57. 57.
    T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, M. Aono, Adv. Funct. Mater. 22, 70 (2012)CrossRefGoogle Scholar
  58. 58.
    A.J. Bard, R. Persons, J. Jordan, Standard potentials in aqueous solution (Marcel Dekker, New York, 1985)Google Scholar
  59. 59.
    N. Banno, T. Sakamoto, N. Iguchi, S. Sunamura, K. Terabe, T. Hasegawa, M. Aono, IEEE Trans. Electron. Devices 55, 3283 (2008)CrossRefGoogle Scholar
  60. 60.
    T. Tsuruoka, I. Valov, C. Mannequin, T. Hasegawa, R. Waser, M. Aono, Jpn. J. Appl. Phys. 55, 06GJ09 (2016)CrossRefGoogle Scholar
  61. 61.
    C. Cao, Y. He, J. Torras, E. Deumens, S.B. Trickey, H. Cheng, J. Chem. Phys. 126, 211101 (2007)CrossRefGoogle Scholar
  62. 62.
    S. Tappertzhofen, M. Hempel, I. Valov, R. Waser, Mater. Res. Soc. Symp. Proc. 1330 (2011)Google Scholar
  63. 63.
    C.-N. Xu, K. Miyazaki, T. Watanabe, Sensors Actuators B Chem. 46, 87 (1998)CrossRefGoogle Scholar
  64. 64.
    F. Messerschmitt, M. Kubiecek, J.M. Rupp, Adv. Funct. Mater. 25, 5117 (2015)CrossRefGoogle Scholar
  65. 65.
    C. Mannequin, T. Tsuruoka, T. Hasegawa, M. Aono, Appl. Surf. Sci. 385, 426 (2016)CrossRefGoogle Scholar
  66. 66.
    C. Mannequin, T. Tsuruoka, T. Hasegawa, M. Aono, Jpn. J. Appl. Phys. 55, 06GG08 (2016)CrossRefGoogle Scholar
  67. 67.
    J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, Science 280, 1716 (1998)CrossRefGoogle Scholar
  68. 68.
    F.-Q. Xie, L. Nittler, C. Obemair, T. Schmmel, Phys. Rev. Lett. 93, 128303 (2004)CrossRefGoogle Scholar
  69. 69.
    N. Banno, T. Sakamoto, N. Iguchi, H. Kawaura, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa, M. Aono, IEICE Trans. Electron. E89-C, 1492 (2006)CrossRefGoogle Scholar
  70. 70.
    T. Sakamoto, N. Iguchi, M. Aono, Appl. Phys. Lett. 96, 252104 (2010)CrossRefGoogle Scholar
  71. 71.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)CrossRefGoogle Scholar
  72. 72.
    T. Hasegawa, Y. Itoh, H. Tanaka, T. Hino, T. Tsuruoka, K. Terabe, H. Miyazaki, K. Tsukagoshi, T. Ogawa, S. Yamaguchi, M. Aono, Appl. Phys. Express 4, 15204 (2011)CrossRefGoogle Scholar
  73. 73.
    Q. Wang, Y. Itoh, T. Tsuruoka, M. Aono, T. Hasegawa, Adv. Mater. 27, 6029 (2015)CrossRefGoogle Scholar
  74. 74.
    Q. Wang, Y. Itoh, T. Hasegawa, T. Tsuruoka, S. Yamaguchi, S. Watanabe, T. Hiramoto, M. Aono, Appl. Phys. Lett. 102, 233508 (2013)CrossRefGoogle Scholar
  75. 75.
    T. Tsuruoka, T. Hasegawa, K. Terabe, M. Aono, Nanotechnology 23, 435705 (2012)CrossRefGoogle Scholar
  76. 76.
    T. Tsuruoka, T. Hasegawa, K. Terabe, M. Aono, Mater. Res. Soc. Symp. Proc. 1562 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)IbarakiJapan
  2. 2.Department of Applied PhysicsWaseda UniversityTokyoJapan

Personalised recommendations