Separation of the bulk and grain boundary contributions to the total conductivity of solid lithium-ion conducting electrolytes

  • Philipp Braun
  • Christian Uhlmann
  • André Weber
  • Heike Störmer
  • Dagmar Gerthsen
  • Ellen Ivers-Tiffée
Article
  • 297 Downloads

Abstract

The transport properties of lithium-ion conducting Li3xLa2/3-xTiO3 are studied for bulk and grain-boundary effects. This paper introduces a procedure for investigating bulk and grain-boundary polarization contributions using electrochemical impedance spectroscopy (EIS) and subsequent analysis via the distribution function of relaxation times (DRT) [1]. The frequency range of impedance spectroscopy is extended up to 120 MHz to resolve all conductivity contributions occurring in a polycrystalline solid electrolyte. Intra grain (bulk) and inter grain (grain boundary) conductivity contributions are separated using (i) a systematic variation of solid electrolyte contacting, (ii) two different solid electrolyte microstructures and activation energies were determined using adequate equivalent circuit models. Finally, these results are supported by SEM analysis, revealing different grain size distributions and different contents of inhomogeneities in Li3xLa2/3-xTiO3 solid electrolytes sintered at 1400°C and at 1450°C.

Keywords

Solid electrolyte Impedance analysis LLTO Bulk/grain boundary separation 

References

  1. 1.
    H. Schichlein, A.C. Müller, M. Voigts, A. Krügel, E. Ivers-Tiffée, Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem 32, 875–882 (2002)CrossRefGoogle Scholar
  2. 2.
    Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86(10), 689–693 (1993)CrossRefGoogle Scholar
  3. 3.
    J. Fu, Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5. Solid State Ionics 96, 195–200 (1997)CrossRefGoogle Scholar
  4. 4.
    R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Engl 46(41), 7778–81 (2007)CrossRefGoogle Scholar
  5. 5.
    D.M. Bernardi, J.Y. Go, Analysis of pulse and relaxation behavior in lithium-ion batteries. J Power Sources 196(1), 412–427 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Stramare, V. Thangadurai, W. Weppner, Lithium lanthanum titanates: a review. Chem Mater 15(21), 3974–3990 (2003)CrossRefGoogle Scholar
  7. 7.
    P. Abelard, J.F. Baumard, Study of the dc and ac electrical properties of an yttria-stabilized zirconia single crystal [(ZrO2)0.88-(Y2O3)0.12]. Phys Rev B 26(2), 1005–1017 (1982)CrossRefGoogle Scholar
  8. 8.
    J.E. Bauerle, Study of solid electrolyte polarization by a complex admittance method. J Phys Chem Solids 30, 2657–2670 (1969)CrossRefGoogle Scholar
  9. 9.
    I.D. Raistrick, C. Ho, R.A. Huggins, Ionic conductivity of some lithium silicates and aluminosilicates. J Electrochem Soc 123(10), 1469–1476 (1976)CrossRefGoogle Scholar
  10. 10.
    R. de Levie, The influence of surface roughness of solid electrodes on electrochemical measurements. Electrochim Acta 10, 113–130 (1965)CrossRefGoogle Scholar
  11. 11.
    L. Nyikos, T. Pajkossy, Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim Acta 30(11), 1533–1540 (1985)CrossRefGoogle Scholar
  12. 12.
    K.J. Lee, S.Y. Lee, P. Nash, “Li-Ni (Lithium-Nickel),” in Binary Alloy Phase Diagrams, 2nd ed. T.B. Massalski, Ed. ASM International, 1990, pp. 2450–2453Google Scholar
  13. 13.
    A.D. Pelton, “Au-Li (Gold-Lithium),” in Binary Alloy Phase Diagrams, 2nd ed. T. B. Massalski, Ed. ASM International, 1990, pp. 387–389Google Scholar
  14. 14.
    A. Ruiz, Electrical properties of La1.33xLi3xTi2O6 (0.1 < x < 0.3). Solid State Ionics 112(3–4), 291–297 (1998)CrossRefGoogle Scholar
  15. 15.
    C. Uhlmann, P. Braun, J. Illig, A. Weber, E. Ivers-Tiffée, Interface and grain boundary resistance of a lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) solid electrolyte. J Power Sources 307, 578–586 (2016)CrossRefGoogle Scholar
  16. 16.
    B.A. Boukamp, A linear kronig-kramers transform test for immittance data validation. J Electrochem Soc 142(6), 1885–1894 (1995)CrossRefGoogle Scholar
  17. 17.
    M. Schönleber, D. Klotz, E. Ivers-Tiffée, A method for improving the robustness of linear kramers-kronig validity tests. Electrochim Acta 131, 20–27 (2014)CrossRefGoogle Scholar
  18. 18.
    “Kramers-Kronig Validity Test Lin-KK for Impedance Spectra.” [Online]. Available: https://www.iam.kit.edu/wet/english/Lin-KK.php
  19. 19.
    J. Illig, M. Ender, T. Chrobak, J.P. Schmidt, D. Klotz, E. Ivers-Tiffée, Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling. J Electrochem Soc 159(7), A952–A960 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Schönleber, E. Ivers-Tiffée, Approximability of impedance spectra by RC elements and implications for impedance analysis. Electrochem Commun 58, 15–19 (2015)CrossRefGoogle Scholar
  21. 21.
    T. Salkus, E. Kazakevicius, A. Kezionis, A.F. Orliukas, J.C. Badot, O. Bohnke, Determination of the non-Arrhenius behaviour of the bulk conductivity of fast ionic conductors LLTO at high temperature. Solid State Ionics 188, 69–72 (2011)CrossRefGoogle Scholar
  22. 22.
    O. Bohnke, J. Emery, J.L. Fourquet, Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3-x1/3-2x)TiO3. Solid State Ionics 158, 119–132 (2003)CrossRefGoogle Scholar
  23. 23.
    F. Aguesse, J.M. López Del Amo, V. Roddatis, A. Aguadero, J.A. Kilner, Enhancement of the grain boundary conductivity in ceramic Li0.34La0.55TiO3 electrolytes in a moisture-free processing environment. Adv Mater Interfaces 1(7), 1–9 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Philipp Braun
    • 1
  • Christian Uhlmann
    • 1
  • André Weber
    • 1
  • Heike Störmer
    • 2
  • Dagmar Gerthsen
    • 2
  • Ellen Ivers-Tiffée
    • 1
  1. 1.Institute for Applied Materials (IAM-WET)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations