Journal of Electroceramics

, Volume 37, Issue 1–4, pp 79–84 | Cite as

The effect of double impurity cluster of Ni and Co in TiO2 bulk; a DFT study

  • Mohammadreza Elahifard
  • Mohsen Padervand
  • Siamak Yasini
  • Elham Fazeli


The geometrical structure, electronic properties and stability energy of different arrangements of double cluster of Ni-Ni, Co-Co and Ni-Co in rutile and anatase bulk were investigated. Our calculated results showed that Co-Co preferred to state in the nearest distance (nn arrangement) in both anatase and rutile unit cells. While, the Ni-Ni and Ni-Co clusters showed the most stability with the nn form in rutile structure, they preferred the n arrangement (next to the nearest neighbor) in anatas one. These results can be explained by the crystalline structure of rutile that provides the stronger metal-metal interaction by lower distance and also the activity of Co rather than Ni. The band structure results showed a high, moderate and slight decline in the band gap of anatase and rutile in the presence of Co-Co, Ni-Co and Ni-Ni clusters, respectively. An interesting result was shown by altering the direct band gap of pure rutile to the indirect band gap in effect of Co-Co cluster that introduces the Co/rutile structure with an obvious photo-activity. Ni-Ni and Ni-Co impurities show an inverse behavior in anatase phase by changing the indirect band gap of pure anatase to the direct band gap. This may be the main reason to explain the lower photo-efficiency of Ni/TiO2 than pure TiO2 under UV illumination. In the last section we show that the Co impurity energetically prefer to state in TiO2 bulk versus the Ni one by energy of 5 eV.


Double cluster Electronic structure Metal-doped TiO2 Direct and Indirect band gap 

Supplementary material

10832_2016_27_Fig5_ESM.gif (363 kb)

Optimized structures of double impurity cluster in the supercells of rutile and anatase; nn form of Co-Co/rutile (a), ; nn form of Ni-Co/rutile (b) ; nn form of Ni-Ni/rutile (c), nn form of Co-Co/anatase (d), n form of Ni-Co/anatase (e), and n form of Ni-Ni/anatase (f). The red, blue, green, and yellow spheres represent O, Ti, Ni and Co atoms, respectively. (GIF 362 kb)

10832_2016_27_MOESM1_ESM.tif (1.9 mb)
High resolution image (TIFF 1.90 mb)


  1. 1.
    T.L. Thompson, J.T. Yates, Chem. Rev. 106, 4428 (2006)CrossRefGoogle Scholar
  2. 2.
    A. Zaleska, Recent Pat. Eng. 2, 157 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sust. Energ. Rev. 11, 401 (2007)CrossRefGoogle Scholar
  4. 4.
    M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, J. Am. Chem. Soc. 129, 9552 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Azimzadehirani, M.R. Elahifard, S. Haghighi, M.R. Gholami, Photochem. Photobiol. Sci. 12, 1787 (2013)CrossRefGoogle Scholar
  6. 6.
    R. Suryanarayanan, V.M. Naik, P. Kharel, P. Talagala, R. Naik, J. Phys. Condens. Matter 17, 755 (2005)CrossRefGoogle Scholar
  7. 7.
    T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett. 81, 454 (2002)CrossRefGoogle Scholar
  8. 8.
    M.R. Elahifard, M.R. Gholami, Environ. Prog. Sustainable Energy 31, 371 (2012)CrossRefGoogle Scholar
  9. 9.
    M.R. Elahifard, S. Rahimnejad, R. Pourbaba, S. Haghighi, M.R. Gholami, Prog. React. Kinet. Mech. 36, 38 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Duhalde, M.F. Vignolo, F. Golmar, C. Chiliotte, C.E. Rodríguez Torres, L.A. Errico, A.F. Cabrera, M. Rentería, F.H. Sánchez, M. Weissmann, Phys. Rev. B 72, 161313 (2005)CrossRefGoogle Scholar
  11. 11.
    H.H. Tsenga, M.C. Wei, S.F. Hsiunga, C.W. Chioua, Chem. Eng. J. 150, 160 (2009)CrossRefGoogle Scholar
  12. 12.
    Q.G. Yan, W.Z. Weng, H.L. Wan, H. Toghiani, R.K. Toghani, C.U. Pittman, Appl. Catal. A 239, 43 (2003)CrossRefGoogle Scholar
  13. 13.
    X.K. Yang, Q. Li, S.Y. Zhang, X.K. Zhong, Y. Dai, F. Luo, Mater. Corros. 61, 618 (2010)CrossRefGoogle Scholar
  14. 14.
    K. Esquivel, G. Ma, J. García, F.J. Rodríguez, M.V. González, L. Escobar-Alarcón, L. Ortiz-Frade, L.A. Godínez, J. Nanoparticle Res. 13, 3313 (2011)CrossRefGoogle Scholar
  15. 15.
    L.A. Errico, M. Rentería, M. Weissmann, Phys. Rev. B 72, 184425 (2005)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, R. Zhang, J. Li, L. Li, S. Lin, Nanoscale Res. Lett. 9, 46 (2014)CrossRefGoogle Scholar
  17. 17.
    K. Nagaoka, K. Takanabe, K. Aika, Chem. Commun. 9, 1006 (2002)CrossRefGoogle Scholar
  18. 18.
    D.H. Kimw, K.S. Lee, Y.S. Kim, Y.C. Chung, S.J. Kim, J. Am. Ceram. Soc. 89, 515 (2006)CrossRefGoogle Scholar
  19. 19.
    K. Esquivel, M.G. García, F.J. Rodríguez, L.A. Ortiz-Frade, L.A. Godínez, J. Appl. Electrochem. 43, 433 (2013)CrossRefGoogle Scholar
  20. 20.
    Y.S. Kim, Y.C. Chung, K.S. Lee, J. Electroceram. 17, 951 (2006)CrossRefGoogle Scholar
  21. 21.
    T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J. Phys. Chem. Solids 63, 1909 (2002)CrossRefGoogle Scholar
  22. 22.
    D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)CrossRefGoogle Scholar
  23. 23.
    I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Scientific World Journal 2012, 127326 (2012)CrossRefGoogle Scholar
  24. 24.
    K. Nagaoka, K. Takanabe, K. Aika, Appl. Catal. A Gen. 268, 151 (2004)CrossRefGoogle Scholar
  25. 25.
    B. Ranjith, G.P. Kalaignan, Appl. Surf. Sci. 257, 42 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Torrent, F. Jollet, F. Bottin, G. Zerah, X. Gonze, Comput. Mater. Sci. 42, 337 (2008)CrossRefGoogle Scholar
  27. 27.
    M. Fuchs, M. Scheffler, Comput. Phys. Commun. 119, 67 (1999)CrossRefGoogle Scholar
  28. 28.
    R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Phys. Rev. B 61, 7459 (2000)CrossRefGoogle Scholar
  29. 29.
    P.I. Sorantin, K. Schwarz, Inorg. Chem. 31, 567 (1992)CrossRefGoogle Scholar
  30. 30.
    S. Li, P. Jena, Phys. Rev. B 79, 201204 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Mattesini, J.S. de Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson, R. Ahuja, Phys. Rev. B 70, 115101 (2004)CrossRefGoogle Scholar
  32. 32.
    F. Arntz, Y. Yacoby, Phys. Rev. Lett. 17, 857 (1966)CrossRefGoogle Scholar
  33. 33.
    X.G. Kong, Y. Yu, T. Gao, Eur. Phys. J. B 76, 365 (2010)CrossRefGoogle Scholar
  34. 34.
    J. Lee, J. Park, J. Cho, Appl. Phys. Lett. 87, 011904 (2005)CrossRefGoogle Scholar
  35. 35.
    M. Xu, Y. Gao, E.M. Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, C. Woll, Phys. Rev. Lett. 106, 138302 (2011)CrossRefGoogle Scholar
  36. 36.
    A. Monnier, J. Augustynski, J. Electrochem. Soc. 127, 1576 (1980)CrossRefGoogle Scholar
  37. 37.
    P.S. Archana, E.N. Kumar, C. Vijila, S. Ramakrishna, M.M. Yusoffc, R. Jose, Dalton Trans. 42, 1024 (2013)CrossRefGoogle Scholar
  38. 38.
    X.Y. Cui, J.E. Medvedeva, B. Delley, A.J. Freeman, N. Newman, C. Stampfl, Phys. Rev. Lett. 95, 256404 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohammadreza Elahifard
    • 1
  • Mohsen Padervand
    • 2
  • Siamak Yasini
    • 1
  • Elham Fazeli
    • 1
  1. 1.Engineering DepartmentArdakan UniversityArdakanIran
  2. 2.Department of ChemistryUniversity of MaraghehMaraghehIran

Personalised recommendations