Journal of Electroceramics

, Volume 34, Issue 4, pp 255–261 | Cite as

Improved piezoelectric and energy harvesting characteristics in lead-free Fe2O3 modified KNN ceramics

  • Indrani CoondooEmail author
  • Neeraj Panwar
  • Hiroshi Maiwa
  • Andrei L. Kholkin


Lead-free piezoelectric ceramics gained an increased attention due to their high piezoelectric properties combined with the absence of lead and other potentially hazardous elements. In this work, we used a unimorph cantilever beam arrangement to study piezoelectric energy harvesting in pristine K0.5Na0.5NbO3 (KNN) and Fe2O3 modified KNN (KNFN) ceramics that are potential candidates for PZT replacement. The piezoelectric ceramics were synthesized using conventional solid state reaction method. The KNFN ceramics exhibited a superior piezoelectric performance: d 33 = 100 pC/N and mechanical quality factor (Q m = 135) as compared to KNN (d 33 = 83 pC/N; Q m = 76). In addition, the planar electromechanical coupling factor k p was higher in case of KNFN having a value of 0.39 as compared to 0.34 for KNN. The KNFN harvester generated an output power of 0.38 mW/cm3 at a load resistance of 470 kΩ for a transverse displacement amplitude of 1.2 mm. The prospects of using lead-free ceramics for piezoelectric energy harvesting are discussed.


Lead free Piezoelectrics Energy harvesting Ceramics 



One of the authors (I.C.) would like to thank the Portuguese Foundation for Science and Technology (FCT) for the Postdoctoral Grant [No. SFRH/BPD/81032/2011]. Funding from FCT project PTDC/FIS/108025/2008 is highly appreciated.


  1. 1.
    S. Anton, H. Sodano, Smart Mater. Struct. 16, R1 (2007)CrossRefGoogle Scholar
  2. 2.
    Y. Hu, F.Y. Zhang, C. Xu, L. Ling, R.L. Snyder, Z.L. Wang, Nano Lett. 11, 2572 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 9254102 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Priya, J. Electroceram. 19, 165 (2007)Google Scholar
  5. 5.
    C.D. Richards, M.J. Anderson, D.F. Bahr, R.F. Richards, J. Micromech. Microeng. 14, 717 (2004)CrossRefGoogle Scholar
  6. 6.
    H. Kim, V. Bedekar, R. Islam, W.H. Lee, D. Leo, S. Priya, IEEE Ultrason. Freq. Ferroelectr. Control 55, 1900 (2008)CrossRefGoogle Scholar
  7. 7.
    I.T. Seo, Y.J. Cha, I.Y. Kang, J.H. Choi, S. Nahm, T.H. Seung, J.H. Paik, J. Am. Ceram. Soc. 94, 3629 (2011)CrossRefGoogle Scholar
  8. 8.
    R.A. Islam, S. Priya, Appl. Phys. Lett. 88, 032903 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Priya, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Priya, J. Ryu, C.S. Park, J. Oliver, J.J. Choi, D.S. Park, Sensors 9, 6362 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Umeda, K. Nakamura, S. Ueha, Jpn. J. Appl. Phys. 35, 3267 (1996)CrossRefGoogle Scholar
  12. 12.
    Y.B. Jeon, R. Sood, J.H. Jeong, S.G. Kim, Sensors Actuators A 122, 16 (2005)CrossRefGoogle Scholar
  13. 13.
    N. Uppal, P. Shikolas, S. Priya, Ferroelectr. Lett. 32, 67 (2006)CrossRefGoogle Scholar
  14. 14.
    E.K. Reilly, E. Carleton, P.K. Wright, Proceedings: International workshop on wearable & implantable body sensor networks, BSN 2006 38 (2006).Google Scholar
  15. 15.
    S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, R175 (2006)CrossRefGoogle Scholar
  16. 16.
    N.S. Shenck, J.A. Paradiso, IEEE Micro. 21, 30 (2001)CrossRefGoogle Scholar
  17. 17.
    B. Ren, S.W. Or, X. Zhao, H. Luo, J. Appl. Phys. 107, 034501 (2010)CrossRefGoogle Scholar
  18. 18.
    C.H. Choi, I.T. Seo, D. Song, M.S. Jang, B.Y. Kim, S. Nahm, T.H. Sung, H.C. Song, J. Euro. Ceram. Soc. 33, 1343 (2013)CrossRefGoogle Scholar
  19. 19.
    M.A. Halim, S. Khym, J.Y. Park, J. Appl. Phys. 114, 044902 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Chen, S. Xu, N. Yao, Y. Shi, Nano Lett. 10, 2133 (2010)CrossRefGoogle Scholar
  21. 21.
    K.I. Park, S. Xu, Y. Liu, G.T. Hwang, S.J.L. Kang, Z.L. Wang, K.J. Lee, Nano Lett. 10, 4939 (2010)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    H.Y. Park, I.T. Seo, M.K. Choi, S. Nahm, H.G. Lee, H.W. Kang, B.H. Choi, J. Appl. Phys. 104, 034103 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Wu, C.C. Wei, T.S. Wu, H.C. Liu, J. Phys. C Solid State Phys. 16, 2813 (1983)CrossRefGoogle Scholar
  25. 25.
    D. Lin, K.W. Kwok, H.L.W. Chan, J. Phys. D. Appl. Phys. 41, 045401 (2008)CrossRefGoogle Scholar
  26. 26.
    Y. Ting, G. Hariyanto, B.K. Hou, C.Y. Huang, Proceedings of the IEEE International Conference on Information and Automation, (China, June 22–25 2009), pp 778Google Scholar
  27. 27.
    V.R. Challa, M.G. Prasad, F.T. Fisher, Smart Mater. Struct. 18, 095029 (2009)CrossRefGoogle Scholar
  28. 28.
    E. Minazara, D. Vasic, F. Costa, G. Poulin, Ultrasonics 44, 699 (2006)CrossRefGoogle Scholar
  29. 29.
    S.J. Jeong, D.S. Lee, M.S. Kim, D.H. Im, I.S. Kim, K.H. Cho, Ceram. Int. 38S, S369 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Colin, S. Basrour, L. Rufer, C. Bantignies, A. Nguyen-Dinh, J. Physics, Conf Ser 476, 012133 (2013)CrossRefGoogle Scholar
  31. 31.
    I. Kanno, H. Kotera, K. Shibata, F. Horikiri and T. Mishima, Proceedings Power MEMS, (2011), pp 110Google Scholar
  32. 32.
    Y. Tsujiura, E. Suwa, F. Kurokawa, H. Hida, K. Suenaga, K. Shibata, I. Kanno, Jpn. J. Appl. Phys. 52, 09KD13 (2013)CrossRefGoogle Scholar
  33. 33.
    I.T. Seo, C.H. Choi, D. Song, M.S. Jang, B.Y. Kim, S. Nahm, Y.S. Kim, T.H. Sung, H.C. Song, J. Am. Ceram. Soc. 96, 1024 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Indrani Coondoo
    • 1
    Email author
  • Neeraj Panwar
    • 2
  • Hiroshi Maiwa
    • 3
  • Andrei L. Kholkin
    • 1
  1. 1.Department of Materials and Ceramic Engineering & CICECOUniversity of AveiroAveiroPortugal
  2. 2.Department of PhysicsCentral University of RajasthanKishangarhIndia
  3. 3.Materials and Human Environmental SciencesShonan Institute of TechnologyFujisawaJapan

Personalised recommendations