Advertisement

Journal of Electroceramics

, Volume 34, Issue 4, pp 241–248 | Cite as

Effect of sintering conditions on microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics

  • Romy Löhnert
  • Rainer Schmidt
  • Jörg TöpferEmail author
Article

Abstract

The influence of sintering temperature and dwell time on the microstructure formation and dielectric properties of CaCu3Ti4O12 ceramics was investigated. For sintering temperatures of 1050 and 1100 °C significant differences in the CaCu3Ti4O12 ceramic microstructure and the segregation of a CuOx-rich phase towards the grain boundary (GB) areas were observed with increasing dwell time. In addition to the formation of a semiconducting bulk and insulating grain boundary phase the segregated CuOx forms an intergranular phase, and the effects of this phase on the dielectric properties are rather intriguing. At sintering temperature below 1050 °C only small amounts of CuOx segregate, whereas sintering above 1050 °C (e.g., 1100 °C) leads to increased evaporation of the CuOx. Therefore, the effects of the CuOx-rich intergranular phase upon the dielectric properties are felt strongest in samples sintered at 1050 °C. Such effects are discussed in terms of microstructural variations due to liquid phase sintering behavior facilitated by the TiO2-CuOx-eutectic, which appears to be melted at high sintering temperature prior to evaporation of CuOx at prolonged dwell times at the highest sintering temperatures (1100 °C).

Keywords

CaCu3Ti4O12 Sintering temperature Dwell time Microstructure Impedance spectroscopy 

Notes

Acknowledgments

This work was supported by the State of Thuringia, Germany, through a grant in the ProExzellenz network (Kerfunmat, PE 214). R.S. wishes to acknowledge a Ramón y Cajal fellowship from the MINECO (Spain).

References

  1. 1.
    M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)CrossRefGoogle Scholar
  2. 2.
    T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)CrossRefGoogle Scholar
  3. 3.
    A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, J. Eur. Ceram. Soc. 24, 1439 (2004)CrossRefGoogle Scholar
  4. 4.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Sebald, S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, S. Riegg, A. Reller, A. Loidl, Solid State Commun. 150, 857 (2010)CrossRefGoogle Scholar
  6. 6.
    A.J. Moulson, J.M. Herbert, Electroceramics, 2nd edn. (Wiley, Chichester, 2003), p. 327CrossRefGoogle Scholar
  7. 7.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  8. 8.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)CrossRefGoogle Scholar
  9. 9.
    J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)CrossRefGoogle Scholar
  10. 10.
    R. Schmidt, in Ceramic Materials Research Trends, ed. by P.B. Lin (Novascience Publishers, Hauppauge, 2007), p. 321Google Scholar
  11. 11.
    R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004)CrossRefGoogle Scholar
  13. 13.
    J. Li, A.W. Sleight, M.A. Subramanian, Solid State Commun. 135, 260 (2005)CrossRefGoogle Scholar
  14. 14.
    D. Capsoni, M. Bini, V. Massarotti, G. Chiodelli, M.C. Mozzatic, C.B. Azzoni, J. Solid State Chem. 177, 4494 (2004)CrossRefGoogle Scholar
  15. 15.
    L. Ni, X.M. Chen, X.Q. Liu, R.Z. Hou, Solid State Commun. 139, 45 (2006)CrossRefGoogle Scholar
  16. 16.
    J.J. Romero, P. Leret, F. Rubio-Marcos, A. Quesada, J.F. Fernández, J. Eur. Ceram. Soc. 30, 737 (2010)CrossRefGoogle Scholar
  17. 17.
    B.S. Prakash, K.B.R. Varma, J. Phys. Chem. Solids 68, 490 (2007)CrossRefGoogle Scholar
  18. 18.
    C.-M. Wang, K.-S. Kao, S.-Y. Lin, Y.-C. Chen, S.-C. Wenig, J. Phys. Chem. Solids 69, 608 (2008)CrossRefGoogle Scholar
  19. 19.
    R. Schmidt, S. Pandey, P. Fiorenza, D.C. Sinclair, RSC Adv. 3, 14580 (2013)CrossRefGoogle Scholar
  20. 20.
    M.A. de la Rubia, J.J. Reinosa, P. Leret, J.J. Romero, J. de Frutos, J.F. Fernández, J. Eur. Ceram. Soc. 32, 71 (2012)CrossRefGoogle Scholar
  21. 21.
    P. Leret, J.F. Fernandez, J. de Frutos, D. Fernández-Hevia, J. Eur. Ceram. Soc. 27, 3901 (2007)CrossRefGoogle Scholar
  22. 22.
    I. Akin, M. Li, Z. Lu, D.C. Sinclair, RSC Adv. 4, 32594 (2014)CrossRefGoogle Scholar
  23. 23.
    S.I.R. Costa, M. Li, J.R. Frade, D.C. Sinclair, RSC Adv. 3, 7030 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of SciTecUniversity of Applied Sciences JenaJenaGermany
  2. 2.Departamento de Física Aplicada III, GFMC, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations