Journal of Electroceramics

, Volume 33, Issue 1–2, pp 96–104 | Cite as

Enhanced ferroelectric order in Pb(Mg1/3Nb2/3)0.9Ti0.1O3 ceramics by ZnO modification

  • M. Promsawat
  • A. Watcharapasorn
  • Z.-G. Ye
  • S. JiansirisomboonEmail author


In this research, the effects of ZnO modification on ferroelectric order of Pb (Mg1/3Nb2/3)0.9Ti0.1O3 (PMNT) ceramics were studied through characterizations of dielectric and ferroelectric properties. The PMNT/xZnO (where x = 0, 0.4, 2.0, 4.0 and 11.0 mol.%) ceramics were prepared by solid state reaction and sintering process. The lattice parameter a and unit cell volume of pure PMNT ceramic were increased with ZnO modification. The temperature of maximum dielectric constant (T max), the freezing temperature (T f ), the depolarization temperature (T d ) and the polar ordering temperature (T P ) increased while the diffuseness parameter (δ) decreased with the increase in ZnO content, indicating an enhancement of ferroelectric ordering and a decrease in a degree of relaxor behavior of PMNT ceramics by ZnO modification. Polarization-electric field hysteresis loop and butterfly-like strain-electric field curve were displayed around room temperature in the 11.0 mol.% ZnO-modified PMNT sample, which indicated an establishment of polar macro domains. Electrostrictive coefficient (M) reached a highest value of 22.22 × 10−16 m2/V2 for the PMNT/4.0 mol.%ZnO ceramic, which made it a promising material for applications as electrostrictive actuators.


Pb(Mg1/3Nb2/3)0.9Ti0.1O3 (PMNT) ZnO-doping Dielectric properties Ferroelectric properties Electrostrictive properties 



This work was supported by the Thailand Research Fund (TRF) and the National Research University Project under Thailand’s Office of the Higher Education Commission (OHEC), the Faculty of Science and the Graduate School, Chiang Mai University. M.P. would also like to thank the financial support from the TRF through the Royal Golden Jubilee Ph.D. Program. The work at Simon Fraser University was supported by the U.S. Office of Naval Research (Grants #N00014-11-1-0552 and #N00014-12-1-1045) and the Natural Science and Engineering Research Council of Canada (NSERC).


  1. 1.
    K. Babooram, H. Tailor, Z.-G. Ye, Ceram. Int. 30, 1411 (2004)CrossRefGoogle Scholar
  2. 2.
    A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott, N.D. Mathur, Appl. Phys. Lett. 89, 242912 (2006)CrossRefGoogle Scholar
  3. 3.
    X. Wen, C. Feng, L. Chen, S. Huang, Ceram. Int. 33, 815 (2007)CrossRefGoogle Scholar
  4. 4.
    J.D.L.S. Guerra, M.H. Lente, J.A. Eiras, J. Eur. Ceram. Soc. 27, 4033 (2007)CrossRefGoogle Scholar
  5. 5.
    R. Wongmaneerung, R. Yimnirun, S. Ananta, Curr. Appl. Phys. 9, 268 (2009)CrossRefGoogle Scholar
  6. 6.
    A.A. Bokov, Z.-G. Ye, Appl. Phys. Lett. 77, 1888 (2000)CrossRefGoogle Scholar
  7. 7.
    A.A. Bokov, Z.-G. Ye, Phys. Rev. B 66, 064103 (2002)CrossRefGoogle Scholar
  8. 8.
    D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)CrossRefGoogle Scholar
  9. 9.
    Z.-G. Ye, H. Schmid, Ferroelectrics 145, 83 (1993)CrossRefGoogle Scholar
  10. 10.
    F. Wang, C. Jin, Q. Yao, W. Shi, J. Appl. Phys. 114, 027004 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Hao, W. Bai, W. Li, B. Shen, J. Zhai, J. Appl. Phys. 114, 044103 (2013)CrossRefGoogle Scholar
  12. 12.
    O. Bidault, M. Licheron, E. Husson, G. Calvarin, A. Morell, Solid State Commun. 98, 765 (1996)CrossRefGoogle Scholar
  13. 13.
    H. Li, Z. Yang, L. Wei, Y. Chang, Mat. Res. Bull. 44, 638 (2009)CrossRefGoogle Scholar
  14. 14.
    H.-T. Li, B.-P. Zhang, M. Cui, W.-G. Yang, N. Ma, J.-F. Curr, Appl. Phys. 11, 184 (2011)Google Scholar
  15. 15.
    J.-Y. Ha, J.-W. Choi, C.-Y. Kang, D.J. Choi, H.-J. Kim, S.-J. Mater, Chem. Phys. 90, 396 (2005)Google Scholar
  16. 16.
    X. Zeng, A. Ding, X.-S. Zheng, T. Liu, Ceram. Int. 33, 883 (2007)CrossRefGoogle Scholar
  17. 17.
    Y.-C. Lee, T.-K. Lee, J.-H. Jan, J. Eur. Ceram. Soc. 31, 3145 (2011)CrossRefGoogle Scholar
  18. 18.
    K. Kumari, A. Prasad, K. Prasad, J. Mater. Sci. Technol. 27, 213 (2011)CrossRefGoogle Scholar
  19. 19.
    C.-C. Tsai, S.-Y. Chu, C.-S. Hong, S.-F. Chen, J. Eur. Ceram. Soc. 31, 2013 (2011)CrossRefGoogle Scholar
  20. 20.
    I.-Y. Kang, I.-T. Seo, Y.-J. Cha, J.-H. Choi, S. Nahm, T.-H. Sung, J.-H. Paik, J. Eur. Ceram. Soc. 32, 2381 (2012)CrossRefGoogle Scholar
  21. 21.
    H. Cheng, W. Zhou, H. Du, F. Luo, D. Zhu, D. Jiang, B. Xu, J. Alloys Compd. 579, 192 (2013)CrossRefGoogle Scholar
  22. 22.
    S.L. Swartz, T.R. Shrout, Mater. Res. Bull. 17, 1245 (1982)CrossRefGoogle Scholar
  23. 23.
    A.A. Bokov, Y.H. Bing, W. Chen, Z.-G. Ye, S.A. Bogatina, I.P. Raevski, S.I. Raevskaya, E.V. Sahkar, Phys. Rev. B 68, 1 (2003)CrossRefGoogle Scholar
  24. 24.
    J.C. Bruno, A.A. Cavalheiro, M.A. Zaghete, M. Cilense, J.A. Varela, Mater. Chem. Phys. 84, 120 (2004)CrossRefGoogle Scholar
  25. 25.
    R. D. Shannon, Acta Crystallogr., 751 (1976)Google Scholar
  26. 26.
    G. Du, R. Liang, J. Wang, L. Wang, W. Zhang, G. Wang, X. Dong, Ceram. Int. 39, 9299 (2013)CrossRefGoogle Scholar
  27. 27.
    K. Harada, S. Shimanuki, T. Kobayashi, Y. Yamashita, S. Saitoh, J. Am. Ceram. Soc. 85, 145 (2002)CrossRefGoogle Scholar
  28. 28.
    C.-C. Tsai, C.-S. Hong, C.-C. Shih, S.-Y. Chu, J. Alloys Compd. 511, 54 (2012)CrossRefGoogle Scholar
  29. 29.
    X. Chao, Z. Yang, X. Huang, D. Ma, J. Zeng, Curr. Appl. Phys. 9, 1283 (2009)CrossRefGoogle Scholar
  30. 30.
    Y. Yuan, E. Li, B. Tang, L. Bo, X. Zhou, J. Mater. Sci. Mater. Electron. 23, 309 (2012)CrossRefGoogle Scholar
  31. 31.
    R. Wongmaneerung, S. Choopan, R. Yimnirun, S. Ananta, J. Alloys Compd. 509, 3547 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Bonyani, A. Mirzaee, A. Barzegar, M.-R. Saeri, Micro Nano Lett. 7, 762 (2012)CrossRefGoogle Scholar
  33. 33.
    X.-G. Tang, H.L.-W. Chan, J. Appl. Phys. 97, 034109 (2005)CrossRefGoogle Scholar
  34. 34.
    M. Promsawat, A. Watcharapasorn, H.N. Tailor, S. Jiansirisomboon, Z.-G. Ye, J. Appl. Phys. 113, 204101 (2013)CrossRefGoogle Scholar
  35. 35.
    S.B. Majumder, D.C. Agrawal, Y.N. Mohapatra, R.S. Katiyar, Integr. Ferroelectr. 29, 63 (2000)CrossRefGoogle Scholar
  36. 36.
    A. Hall, M. Allahverdi, E.K. Akdogan, A. Safari, J. Electroceram. 15, 143 (2005)CrossRefGoogle Scholar
  37. 37.
    D. La-Orauttapong, B. Noheda, Z.-G. Ye, P.M. Gehring, J. Toulouse, D.E. Cox, G. Shirane, Phys. Rev. B 65, 144101 (2002)CrossRefGoogle Scholar
  38. 38.
    A.A. Bokov, Z.-G. Ye, J. Mater. Sci. 41, 31 (2006)CrossRefGoogle Scholar
  39. 39.
    B. Noheda, D.E. Cox, G. Shirane, J. Gao, Z.-G. Ye, Phys. Rev. B 66, 054104 (2002)CrossRefGoogle Scholar
  40. 40.
    S. Kamba, E. Buixaderas, J. Petzelt, J. Fousek, J. Nosek, P. Bridenbaugh, J. Appl. Phys. 93, 933 (2003)CrossRefGoogle Scholar
  41. 41.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Promsawat
    • 1
    • 2
    • 3
  • A. Watcharapasorn
    • 1
    • 2
  • Z.-G. Ye
    • 3
  • S. Jiansirisomboon
    • 1
    • 2
    Email author
  1. 1.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  3. 3.Department of Chemistry and 4D LABSSimon Fraser UniversityBritish ColumbiaCanada

Personalised recommendations