Advertisement

Journal of Electroceramics

, Volume 33, Issue 3–4, pp 155–162 | Cite as

Characterization of real cyclic performance of air electrode for Li-air batteries

  • Dae Ho Yoon
  • Yong Joon ParkEmail author
Article

Abstract

In this study, we characterized the cyclic performance of an electrode employing a carbon nanotube (CNT)/Co3O4 nanocomposite. The lithium anode and electrolyte were replaced every 50 cycles in order to exclude the effect of a corrupted anode and electrolyte and to determine the “real” cyclic performance of the electrode. The overpotential of the cells increased during the first 50 cycles; however, it almost vanished when the lithium anode and electrolyte were replaced. This result indicates that the increased overpotential of the cells during cycling is highly attributed to the corrupted lithium anode and electrolyte. The cycle life of the cell also significantly increased upon replacement of the lithium anode and electrolyte. This confirms that air electrodes have the ability to maintain their designated capacity (such as 1,000 mAh · gelectrode −1) for much longer cycles if the lithium anode and electrolyte can be made more stable. A polydopamine-coated electrode and a LiI-containing electrolyte were introduced and characterized in order to obtain enhanced cyclic performance of the air electrode.

Keywords

Li-air battery Air electrode Catalyst Composite 

Notes

Acknowledgments

This work was supported by Kyonggi University Research Grant 2013

References

  1. 1.
    J.P. Jegal, H.K. Kim, J.S. Kim, K.B. Kim, J Electroceram 31, 218 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Kim, S.H. Kang, H.J. Jeon, J.T. Son, J Electroceram 31, 204 (2013)CrossRefGoogle Scholar
  3. 3.
    C.S. Park, J.H. Kim, Y.J. Park, J Electroceram 31, 230 (2013)CrossRefGoogle Scholar
  4. 4.
    J. He, W. Wang, Z. Zou, F. Long, Z. Fu, J. Electroceram. DOI  10.1007/s10832-014-9889-1
  5. 5.
    T.S. Song, Y.R. Jeon, U.G. Paik, G.Y. Kim, Y.J. Park, J. Electroceram. DOI  10.1007/s10832-013-9871-3
  6. 6.
    K.Y. Kang, D.O. Shin, Y.G. Lee, S. Kim, K.M. Kim. J. Electroceram. DOI  10.1007/s10832-013-9882-0
  7. 7.
    S. Kim, J.K. Noh, S. Yu, W. Chang, K.Y. Chung, B.W. Cho, J Electroceram 30(159) (2013)Google Scholar
  8. 8.
    H.J. Jeon, C.S. Kang, G.W. Yoo, C. Kim, J.T. Son, J Electroceram 30, 172 (2013)CrossRefGoogle Scholar
  9. 9.
    C.S. Kang, J.T. Son, J Electroceram 29, 235 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Kraytsberg, Y. Ein-Eli, J Power Sources 196, 886 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Black, B. Adams, L.F. Nazar, Adv Energy Mater 2, 801 (2012)CrossRefGoogle Scholar
  12. 12.
    R. Padbury, X. Zhang, J Power Sources 196, 4436 (2011)CrossRefGoogle Scholar
  13. 13.
    F. Li, T. Zhang, H. Zhou, Energy Environ Sci 6, 1125 (2013)CrossRefGoogle Scholar
  14. 14.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Nat Mater 11, 19 (2012)CrossRefGoogle Scholar
  15. 15.
    C.S. Park, K.S. Kim, Y.J. Park, J Power Sources 244, 72 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Christensen, P. Albertus, R.S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, A. Kojic, J Electrochem Soc 159, R1 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Zahoor, M. Christy, Y.J. Hwang, K.S. Nahm, J. Electrochem, Sci Technol 3, 14 (2012)Google Scholar
  18. 18.
    B.D. McCloskey, A. Speidel, R. Scheffler, D.C. Miller, V. Viswanathan, J.S. Hummelshøj, J.K. Nørskov, A.C. Luntz, J Phys Chem Lett 3, 997 (2012)CrossRefGoogle Scholar
  19. 19.
    Y.-C. Lu, Y. Shao-Horn, J Phys Chem Lett 4, 93 (2013)CrossRefGoogle Scholar
  20. 20.
    B.M. Gallant, D.G. Kwabi, R.R. Mitchell, J. Zhou, C.V. Thompson, Y. Shao-Horn, Energy Environ Sci 6, 2518 (2013)CrossRefGoogle Scholar
  21. 21.
    B.M. Gallant, R.R. Mitchell, D.G. Kwabi, J. Zhou, L. Zuin, C.V. Thompson, Y. Shao-Horn, J Phys Chem C 116, 20800 (2012)CrossRefGoogle Scholar
  22. 22.
    M.M.O. Thotiyl, S.A. Freunberger, Z. Peng, P.G. Bruce, J Am Chem Soc 135, 494 (2013)CrossRefGoogle Scholar
  23. 23.
    B.D. Adams, C. Radtke, R. Black, M.L. Trudeau, K. Zaghib, L.F. Nazar, Energy Environ Sci 6, 1772 (2013)CrossRefGoogle Scholar
  24. 24.
    H.D. Lim, K.Y. Park, H. Song, E.Y. Jang, H. Gwon, J. Kim, Y.H. Kim, M.D. Lima, R.V. Robles, X. Lepro, R.H. Baughman, K. Kang, Adv Mater 9, 1348 (2013)CrossRefGoogle Scholar
  25. 25.
    J.G. Zhang, D. Wang, W. Xu, J. Xiao, R.E. Williford, J Power Sources 195, 4332 (2010)CrossRefGoogle Scholar
  26. 26.
    T.H. Yoon, Y.J. Park, J Power Sources 244, 344 (2013)CrossRefGoogle Scholar
  27. 27.
    W.H. Ryu, T.H. Yoon, S.H. Song, S. Jeon, Y.J. Park, I.D. Kim, Nano Lett 9, 4190 (2013)CrossRefGoogle Scholar
  28. 28.
    D.S. Kim, Y.J. Park, J Alloys Comp 575, 319 (2013)CrossRefGoogle Scholar
  29. 29.
    D.S. Kim, Y.J. Park, Electrochim. Acta. Available online 8 April (2014)Google Scholar
  30. 30.
    D.S. Kim, Y.J. Park, J Alloys Comp 591, 164 (2014)CrossRefGoogle Scholar
  31. 31.
    T.H. Yoon, Y.J. Park, RSC Adv 4, 17434 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. Chen, S.A. Freunberger, Z. Peng, O. Fontainer, P.G. Bruce, Nat Chem 5, 489 (2013)CrossRefGoogle Scholar
  33. 33.
    V. Giordani, W. Walker, V. Bryantsev, J. Uddin, S. Zecevic, D. Addison, G. Chase, 16th IMLB Abstract, S6-3 (2012)Google Scholar
  34. 34.
    V. Chase, Z. Strahinja, W. Wesley, U. Jasim, S. Kenji, G. Vincent, B. Vyacheslav, B. Mario, A. Dan, US patent, WO2011/133982 A1 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Advanced Materials EngineeringKyonggi UniversitySuwonRepublic of Korea

Personalised recommendations