Journal of Electroceramics

, Volume 32, Issue 4, pp 311–318 | Cite as

A comparative study of high temperature properties of cobalt-free perovskites

  • J. F. Basbus
  • F. D. Prado
  • A. Caneiro
  • L. V. MogniEmail author


Co-free perovskites with chemical composition Ba0.5Sr0.5Fe0.8M0.2O3-δ (M = Ni, Cu, Zn) were synthesized by the modified Pechini method, and their structure and microstructure were characterized by XRD and SEM. Oxygen content, electrical resistivity and Thermal Expansion Coefficient (TEC) were evaluated in air between room temperature and 900 °C. The high-temperature properties of these perovskites were compared with those of Co containing Ba0.5Sr0.5Fe0.8Co0.2O3-δ perovskite. The highest electrical conductivity was obtained for Ba0.5Sr0.5Fe0.8Cu0.2O3-δ, with values of 47.6 Scm−1 at 544 °C. This same composition also exhibits the highest oxygen vacancies concentration: 3-δ = 2.61 at room temperature. In contrast, the Ba0.5Sr0.5Fe0.8Zn0.2O3-δ, showed lower electrical conductivity suggesting that the Zn+2 ions block electron transport. Co-free perovskites seem to be stable at high temperatures for long term periods. However, these compounds suffered degradation at room temperature in samples stored in air.


Cobalt-free perovskite SOFC cathode Oxygen separation membranes Ba0.5Sr0.5Fe0.8M0.2O3-δ Dilatometry Conductivity 



This work was supported by CNEA (Argentine Atomic Energy Commission), CONICET (Argentine Research Council), UNCuyo and ANPCyT. The authors thank Prof. N. Gonzalez and Mr. Alex Ferrari for English revision of this manuscript.


  1. 1.
    L. Yang, C. Zuo, S. Wang, Z. Cheng, M. Liu, Adv. Mater. 20, 3280 (2008)CrossRefGoogle Scholar
  2. 2.
    E.P. Murray, M. Sever, S. Barnett, Solid State Ionics 148, 27 (2002)CrossRefGoogle Scholar
  3. 3.
    N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado, L. Mogni, A. Caneiro, Solid State Ionics 180, 1448 (2009)CrossRefGoogle Scholar
  4. 4.
    N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado, A. Caneiro, Solid State Ionics 177, 907 (2006)CrossRefGoogle Scholar
  5. 5.
    L. Baqué, A. Caneiro, M.S. Moreno, A. Serquis, Electrochem. Commun. 10, 1905 (2008)CrossRefGoogle Scholar
  6. 6.
    J.-H. Kim, L. Mogni, F. Prado, A. Caneiro, J.A. Alonso, A. Manthiram, J. Electrochem. Soc. 156, B1376 (2009)CrossRefGoogle Scholar
  7. 7.
    N. Li, Z. Lü, B. Wei, X. Huang, K. Chen, Y. Zhang, W. Su, J. Alloys Compd. 454, 274 (2008)CrossRefGoogle Scholar
  8. 8.
    J.-H. Kim, F. Prado, A. Manthiram, J. Electrochem. Soc. 155, B1023 (2008)CrossRefGoogle Scholar
  9. 9.
    J.H. Kim, A. Manthiram, J. Electrochem. Soc. 155, B385 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Tarancón, A. Morata, G. Dezanneau, S.J. Skinner, J.A. Kilner, S. Estradé, F. Hernández-Ramírez, F. Peiró, J.R. Morante, J. Power Sources 174, 255 (2007)CrossRefGoogle Scholar
  11. 11.
    Z. Shao, S.M. Haile, Nature 431, 170 (2004)CrossRefGoogle Scholar
  12. 12.
    C. Niedrig, S. Taufall, M. Burriel, W. Menesklou, S.F. Wagner, S. Baumann, E. Ivers-Tiffée, Solid State Ionics 197, 25 (2011)CrossRefGoogle Scholar
  13. 13.
    B. Wei, Z. Lü, X. Huang, M. Liu, N. Li, W. Su, J. Power Sources 176, 1 (2008)CrossRefGoogle Scholar
  14. 14.
    B. Wei, Z. Lü, X. Huang, Z. Liu, J. Miao, N. Li, W. Su, J. Am. Ceram. Soc. 90, 3364 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Park, J. Zou, H. Yoon, G. Kim, J.S. Chung, Int. J. Hydrogen Energy 36, 6184 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Zhao, B. He, Y. Ling, Z. Xun, R. Peng, G. Meng, X. Liu, Int. J. Hydrogen Energy 35, 3769 (2010)CrossRefGoogle Scholar
  17. 17.
    L. Zhao, B. He, X. Zhang, R. Peng, G. Meng, X. Liu, J. Power Sources 195, 1859 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Ling, J. Yu, B. Lin, X. Zhang, L. Zhao, X. Liu, J. Power Sources 196, 2631 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Rodriguez-Carvajal. Abstr. Satell. Meet. Powder Diffr. XV Congr. IUCr, Toulouse, Fr. 127 , (1990)Google Scholar
  20. 20.
    A. Caneiro, P. Bavdaz, J. Fouletier, J.P. Abriata, Rev. Sci. Instrum. 53, 1072 (1982)CrossRefGoogle Scholar
  21. 21.
    V. Goldschmidt, Naturwissenschaften 14, 477 (1926)CrossRefGoogle Scholar
  22. 22.
    A. Le Bail, Powder Diffract. 20, 316 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Ding, Y. Chen, X. Lu, B. Lin, Int. J. Hydrogen Energy 37, 9830 (2012)CrossRefGoogle Scholar
  24. 24.
    Q. Zhu, T. Jin, Y. Wang, Solid State Ionics 177, 1199 (2006)CrossRefGoogle Scholar
  25. 25.
    K. Efimov, T. Halfer, A. Kuhn, P. Heitjans, J.J. Caro, A. Feldhoff, Chem. Mater. 22, 1540 (2010)CrossRefGoogle Scholar
  26. 26.
    C.Y. Park, T.H. Lee, S.E. Dorris, J.-H. Park, U. Balachandran, J. Power Sources 214, 337 (2012)CrossRefGoogle Scholar
  27. 27.
    H.X. Luo, L.H. Yu, X.Z. Chen, H.H. Wang, J. Caro, Chin. Chem. Lett. 20, 250 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Shahgaldi, Z. Yaakob, D.J. Khadem, M. Ahmadrezaei, W.R.W. Daud, J. Alloys Compd. 509, 9005 (2011)CrossRefGoogle Scholar
  29. 29.
    B. Wei, Z. Lü, X. Huang, J. Miao, X. Sha, X. Xin, W. Su, J. Eur. Ceram. Soc. 26, 2827 (2006)CrossRefGoogle Scholar
  30. 30.
    E. Bucher, A. Egger, G.B. Caraman, W. Sitte, J. Electrochem. Soc. 155, B1218 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. F. Basbus
    • 1
  • F. D. Prado
    • 2
  • A. Caneiro
    • 3
  • L. V. Mogni
    • 3
    Email author
  1. 1.Centro Atómico BarilocheCNEA-AGNPCyTS.C de BarilocheArgentina
  2. 2.CONICETUniversidad Nacional de SurBahía BlancaArgentina
  3. 3.Centro Atómico BarilocheCNEA-CONICETS.C de BarilocheArgentina

Personalised recommendations