Journal of Electroceramics

, Volume 32, Issue 1, pp 28–36 | Cite as

Strain effects on the ionic conductivity of Y-doped ceria: A simulation study

  • Mario Burbano
  • Dario Marrocchelli
  • Graeme W. Watson
JECR SPECIAL ISSUE ON ELECTRO-CHEMO-MECHANICS

Abstract

In this paper we report a computational study of the effects of strain on the conductivity of Y-doped ceria (YDC). This material was chosen as it is of technological interest in the field of Solid Oxide Fuel Cells (SOFCs). The simulations were performed under realistic operational temperatures and strain (𝜖) levels. For bulk and thin film YDC, the results show that tensile strain leads to conductivity enhancements of up to 3.5 × and 1.44 × , respectively. The magnitude of these enhancements is in agreement with recent experimental and computational evidence. In addition, the methods presented herein allowed us to identify enhanced ionic conductivity in the surface regions of YDC slabs and its anisotropic character.

Keywords

SOFC Ceria Strain MD 

References

  1. 1.
    R.M. Ormerod, Chem. Soc. Rev. 32, 17 (2003)CrossRefGoogle Scholar
  2. 2.
    E.D. Wachsman, C.A. Marlowe, K.T. Lee, Energy Environ. Sci. 5(2), 5498 (2012)CrossRefGoogle Scholar
  3. 3.
    E.D. Wachsman, K.T. Lee, Science 334(6058), 935 (2011)CrossRefGoogle Scholar
  4. 4.
    B.C.H. Steele, Solid State Ionics 134(1–2), 3 (2000)CrossRefGoogle Scholar
  5. 5.
    J.B. Goodenough, Annu. Rev. Mater. Res. 33, 91 (2003)CrossRefGoogle Scholar
  6. 6.
    J.L. Rupp, Solid State Ionics 207(0), 1 (2012)CrossRefGoogle Scholar
  7. 7.
    H.L. Tuller, A.S. Nowick, J. Electrochem. Soc. 122(2), 255 (1975)CrossRefGoogle Scholar
  8. 8.
    H.L. Tuller, A.S. Nowick, J. Phys. Chem. Solids 38(8), 859 (1977)CrossRefGoogle Scholar
  9. 9.
    A. Bogicevic, C. Wolverton, G.M. Crosbie, E.B. Stechel, Phys. Rev. B 64, 014106 (2001)CrossRefGoogle Scholar
  10. 10.
    A. Bogicevic, C. Wolverton, Phys. Rev. B 67(2), 024106 (2003)CrossRefGoogle Scholar
  11. 11.
    A. Navrotsky, P. Simoncic, H. Yokokawa, W. Chen, T. Lee, Faraday Discuss. 134, 171 (2007)CrossRefGoogle Scholar
  12. 12.
    F. Pietrucci, M. Bernasconi, A. Laio, M. Parrinello, Phys. Rev. B 78(9), 094301 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Navrotsky, J. Mater. Chem. 20(47), 10577 (2010)CrossRefGoogle Scholar
  14. 14.
    S.T. Norberg, S. Hull, I. Ahmed, S.G. Eriksson, D. Marrocchelli, P.A. Madden, P. Li, J.T.S. Irvine, Chem. Mater. 23(6), 1356 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Marrocchelli, P.A. Madden, S.T. Norberg, S. Hull, Chem. Mater. 23(6), 1365 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Burbano, S.T. Norberg, S. Hull, S.G. Eriksson, D. Marrocchelli, P.A. Madden, G.W. Watson, Chem. Mater. 24(1), 222 (2012)CrossRefGoogle Scholar
  17. 17.
    C.T. Chen, S. Sen, S. Kim, Chem. Mater. 24(18), 3604 (2012)CrossRefGoogle Scholar
  18. 18.
    V. Butler, C.R.A. Catlow, B.E.F. Fender, J.H. Harding, Solid State Ionics 8(2), 109 (1983)CrossRefGoogle Scholar
  19. 19.
    J. Kilner, Solid State Ionics 8(3), 201 (1983)CrossRefGoogle Scholar
  20. 20.
    G.B. Balazs, R. Glass, Solid State Ionics 76, 155 (1995)CrossRefGoogle Scholar
  21. 21.
    H. Hayashi, R. Sagawa, H. Inaba, K. Kawamura, Solid State Ionics 131(3–4), 281 (2000)CrossRefGoogle Scholar
  22. 22.
    D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, Proc. Natl. Acad. Sci. USA 103, 3518 (2006)CrossRefGoogle Scholar
  23. 23.
    A.D. Murray, G.E. Murch, C.R.A. Catlow, Solid State Ionics 18–19(Part 1), 196 (1986)CrossRefGoogle Scholar
  24. 24.
    B. Wang, R.J. Lewis, A.N. Cormack, Acta Mater. 59(5), 2035 (2011)CrossRefGoogle Scholar
  25. 25.
    E. Fabbri, D. Pergolesi, E. Traversa, Sci. Technol. Adv. Mater. 11(5), 054503 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Santiso, M. Burriel, J. Solid State Electrochem. 15, 985 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Orsini, P. Medaglia, S. Sanna, E. Traversa, S. Licoccia, A. Tebano, G. Balestrino, Superlattice. Microst. 46, 223 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Sanna, V. Esposito, D. Pergolesi, A. Orsini, A. Tebano, Licoccia, S., G. Balestrino, E. Traversa, Adv. Funct. Mater. 19(11), 1713 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Sanna, V. Esposito, A. Tebano, S. Licoccia, E. Traversa, G. Balestrino, Small 6(17), 1863 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Chu, Y. Sun, U. Aghoram, S.E. Thompson, Annu. Rev. Mater. Res. 39(1), 203 (2009)CrossRefGoogle Scholar
  31. 31.
    N. Sata, K. Eberman, K. Eberl, J. Maier, Nature 408(6815), 946 (2000)CrossRefGoogle Scholar
  32. 32.
    D. Sayle, J. Doig, S. Parker, G. Watson, Chem. Comm. 15, 1804–1806 (2003)Google Scholar
  33. 33.
    S. Azad, O.A. Marina, C.M. Wang, L. Saraf, V. Shutthanandan, D.E. McCready, A. El-Azab, J.E. Jaffe, M.H. Engelhard, C.H.F. Peden, S. Thevuthasan, Appl. Phys. Lett. 86, 131906 (2005)CrossRefGoogle Scholar
  34. 34.
    C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Phys. Chem. Chem. Phys. 10(31), 4623 (2008)CrossRefGoogle Scholar
  35. 35.
    L. Chen, C.L. Chen, X. Chen, W. Donner, S.W. Liu, Y. Lin, D.X. Huang, A.J. Jacobson, Appl. Phys. Lett. 83, 4737 (2003)CrossRefGoogle Scholar
  36. 36.
    D.C. Sayle, S.A. Maicaneanu, G.W. Watson, J. Am. Chem. Soc. 124, 11429 (2002)CrossRefGoogle Scholar
  37. 37.
    D. Sayle, C. Catlow, N. Dulamita, M. Healy, S. Maicaneanu, B. Slater, G. Watson, Mol. Simul. 28, 683 (2002)CrossRefGoogle Scholar
  38. 38.
    C.E. Mohn, M.J. Stein, N.L. Allan, J. Mater. Chem. 20, 10403 (2010). doi:10.1039/C0JM01864C Google Scholar
  39. 39.
    J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 321(5889), 676 (2008)CrossRefGoogle Scholar
  40. 40.
    D. Pergolesi, E. Fabbri, S.N. Cook, V. Roddatis, E. Traversa, J.A. Kilner, ACS Nano. 6(12), 10524 (2012)Google Scholar
  41. 41.
    I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Solid State Ionics 176, 1319 (2005)CrossRefGoogle Scholar
  42. 42.
    N. Schichtel, C. Korte, D. Hesse, J. Janek, Phys. Chem. Chem. Phys. 11(17), 3043 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Sillassen, P. Eklund, N. Pryds, E. Johnson, U. Helmersson, J. Bøttiger, Adv. Funct. Mater. 20(13), 2071 (2010)CrossRefGoogle Scholar
  44. 44.
    T.X.T. Sayle, S.C. Parker, D.C. Sayle, J. Mater. Chem. 16(11), 1067 (2006)CrossRefGoogle Scholar
  45. 45.
    X. Guo, Science 324(5926), 465 (2009)CrossRefGoogle Scholar
  46. 46.
    X. Guo, Scr. Mater. 65(2), 96 (2011)CrossRefGoogle Scholar
  47. 47.
    K. Suzuki, M. Kubo, Y. Oumi, R. Miura, H. Takaba, A. Fahmi, A. Chatterjee, K. Teraishi, A. Miyamoto, Appl. Phys. Lett. 73(11), 1502 (1998)CrossRefGoogle Scholar
  48. 48.
    G. Dezanneau, J. Hermet, B. Dupé, Int. J. Hydrog. Energy 37(9), 8081 (2012)CrossRefGoogle Scholar
  49. 49.
    A. Kushima, B. Yildiz, ECS Trans. 25(2), 1599 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Kushima, B. Yildiz, J. Mater. Chem. 20(23), 4809 (2010)CrossRefGoogle Scholar
  51. 51.
    T. Suzuki, I. Kosacki, H.U. Anderson, Solid State Ionics 151(1–4), 111 (2002)Google Scholar
  52. 52.
    H.L. Tuller, Solid State Ionics 131, 143 (2000)CrossRefGoogle Scholar
  53. 53.
    A. Atkinson, T. Ramos, Solid State Ionics 129, 259 (2000)CrossRefGoogle Scholar
  54. 54.
    S. Hull, S.T. Norberg, I. Ahmed, S.G. Eriksson, D. Marrocchelli, P.A. Madden, J. Solid State Chem. 182, 2815 (2009)CrossRefGoogle Scholar
  55. 55.
    B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001)CrossRefGoogle Scholar
  56. 56.
    D. Marrocchelli, S.R. Bishop, H.L. Tuller, B. Yildiz, Adv. Funct. Mater. 22, 1958 (2012)CrossRefGoogle Scholar
  57. 57.
    D. Marrocchelli, S.R. Bishop, H.L. Tuller, G.W. Watson, B. Yildiz, Phys. Chem. Chem. Phys. 14, 12070 (2012)CrossRefGoogle Scholar
  58. 58.
    S.R. Bishop, D. Marrocchelli, W. Fang, K. Amezawa, K. Yashiro, G.W. Watson, Energy Environ. Sci. 6, 1142 (2013)CrossRefGoogle Scholar
  59. 59.
    J.M. Perkins, S. Fearn, S.N. Cook, R. Srinivasan, C.M. Rouleau, H.M. Christen, G.D. West, R.J.H. Morris, H.L. Fraser, S.J. Skinner, J.A. Kilner, D.W. McComb, Adv. Funct. Mater. 20(16), 2664 (2010)CrossRefGoogle Scholar
  60. 60.
    R.A. De Souza, A. Ramadan, S. Horner, Energy Environ. Sci, 5445–5453 (2012)Google Scholar
  61. 61.
    M. Rushton, A. Chroneos, S. Skinner, J. Kilner, R. Grimes, Solid State Ionics 230, 37 (2013)CrossRefGoogle Scholar
  62. 62.
    M. Burbano, D. Marrocchelli, B. Yildiz, H.L. Tuller, S.T. Norberg, S. Hull, P.A. Madden, G.W. Watson, J. Phys.: Condens. Matter. 23(25), 255402 (2011)Google Scholar
  63. 63.
    B. Li, J. Zhang, T. Kaspar, V. Shutthanandan, R.C. Ewing, J. Lian, Phys. Chem. Chem. Phys. 15(4), 1296 (2013)CrossRefGoogle Scholar
  64. 64.
    D. Marrocchelli, P.A. Madden, S.T. Norberg, S. Hull, J. Phys.: Condens. Matter 21(40), 405403 (2009)Google Scholar
  65. 65.
    D. Marrocchelli, M. Salanne, P.A. Madden, . J. Phys. Condens. Matter 22(15), 152102 (2010)CrossRefGoogle Scholar
  66. 66.
    M. Wilson, S. Jahn, P.A. Madden, J. Phys. Condens. Matter 16(27), S2795 (2004)CrossRefGoogle Scholar
  67. 67.
    R. Heaton, R. Brookes, P. Madden, M. Salanne, C. Simon, P. Turq, J. Phys. Chem. B 110(23), 11454 (2006)CrossRefGoogle Scholar
  68. 68.
    M. Salanne, C. Simon, P. Turq, P. Madden, J. Fluor. Chem. 130(1), 38 (2009)CrossRefGoogle Scholar
  69. 69.
    P.A. Madden, R. Heaton, A. Aguado, S. Jahn, J. Mol. Struct.: THEOCHEM. 771(1–3), 9 (2006)CrossRefGoogle Scholar
  70. 70.
    B.G. Dick, Phys. Rev. 112(1), 90 (1958)CrossRefGoogle Scholar
  71. 71.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003)CrossRefGoogle Scholar
  72. 72.
    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125(22), 224106 (2006)CrossRefGoogle Scholar
  73. 73.
    J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, J. Chem. Phys. 124(15), 154709 (2006)CrossRefGoogle Scholar
  74. 74.
    M. Burbano, D. Marrocchelli, M. Salanne, P. Madden, G. Watson, (In Preparation)Google Scholar
  75. 75.
    J.L.F. Da Silva, M.V. Ganduglia-Pirovano, J. Sauer, V. Bayer, G. Kresse, Phys. Rev. B 75(4), 045121 (2007)CrossRefGoogle Scholar
  76. 76.
    R. Gillen, S.J. Clark, J. Robertson, Phys. Rev. B 87, 125116 (2013)CrossRefGoogle Scholar
  77. 77.
    G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101(5), 4177 (1994)CrossRefGoogle Scholar
  78. 78.
    H. Nörenberg, G. Briggs, Surf. Sci. 424, L352 (1999)CrossRefGoogle Scholar
  79. 79.
    M. Nolan, S.C. Parker, G.W. Watson, Surf. Sci. 595(1-3), 223 (2005)CrossRefGoogle Scholar
  80. 80.
    J. Hinterberg, T. Zacherle, R.A. De Souza, Phys. Rev. Lett. 110, 205901 (2013). doi:10.1103/PhysRevLett.110.205901 http://link.aps.org/doi/10.1103/PhysRevLett.110.205901 CrossRefGoogle Scholar
  81. 81.
    D.R. Ou, T. Mori, F. Ye, M. Takahashi, J. Zou, J. Drennan, Acta Mater. 54(14), 3737 (2006)CrossRefGoogle Scholar
  82. 82.
    D.Y. Wang, D. Park, J. Griffith, A. Nowick, Solid State Ionics 2(2), 95 (1981)CrossRefGoogle Scholar
  83. 83.
    X. Changrong, in Green Chemistry and Chemical Engineering (CRC Press, 2008), pp. 1–71Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mario Burbano
    • 1
  • Dario Marrocchelli
    • 1
    • 2
    • 3
  • Graeme W. Watson
    • 1
  1. 1.School of Chemistry and CRANNTrinity College DublinDublin 2Ireland
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations