Advertisement

Journal of Electroceramics

, Volume 29, Issue 1, pp 29–36 | Cite as

Electrical conductivities of strontium-doped rare earth ultraphosphates and oxyphosphates

  • Atsushi UnemotoEmail author
  • Koji Amezawa
  • Tatsuya Kawada
Article

Abstract

Electrical conductivity of lanthanum ultraphosphate and neodymium oxyphosphate both doped with strontium, La1-x Sr x P5O14-δ (x = 0, 0.01, 0.03 and 0.05 in nominal formulae) and (Nd1-x Sr x )3PO7-δ (x = 0 and 0.03), respectively, was investigated with a two-probe ac technique. The electrical conductivity was measured as functions of oxygen partial pressure and water vapor pressure in the temperature range of 523 to 673 K for the former and 973 to 1273 K for the latter. La1-x Sr x P5O14-δ have considerable protonic conductivity, which was evidenced by isotope effect of hydrogen and deuteron on the electrical conductivity, over the wide range of oxygen partial pressure such as oxygen and hydrogen containing atmospheres. La1-x Sr x P5O14-δ exhibit protonic conductivities of 4.7 × 10−5−2.2 × 10−3 S cm−1 in the temperature range of 523–673 K, which is comparable to the other phosphate based protonic conductors. Although protonic defects are considered to be induced and a major positive defect in (Nd0.97Sr0.03)3PO7-δ , attributed to small protonic mobility, (Nd0.97Sr0.03)3PO7-δ is a mixed oxide ion and electron hole conductor at 1173–1273 K, then, it turns to be electron hole conductor below temperatures of 1073 K. (Nd0.97Sr0.03)3PO7-δ in 1.0 × 10−2 atm oxygen–1.9 × 10−2 atm water vapor had smaller conductivity than that in unhumidified 1.0 × 10−2 atm oxygen. The conductivities were 9.7 × 10−3−3.1 × 10−1 S cm−1 and 2.8 × 10−3−2.5 × 10−1 S cm−1 in the above gases, respectively, in the temperature range of 973–1273 K. (Nd0.97Sr0.03)3PO7-δ had larger activation energy such as 165 kJ mol−1 than proton conducting La1-x Sr x P5O14-δ (76 kJ mol−1) including other proton conducting phosphates (68–86 kJ mol−1).

Keywords

Lanthanum ultraphosphate Neodymium oxyphosphate Defects Conductivity 

Notes

Acknowledgments

This study was supported by the JFE 21st Century Foundation, Toyota Motor Co., Ltd. and the Grant-in-Aid for JSPS (Japan Society of the Promotion of Science) Fellows from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics. 3(4), 359 (1981)CrossRefGoogle Scholar
  2. 2.
    K.D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003)CrossRefGoogle Scholar
  3. 3.
    H. Iwahara, Solid State Ionics. 77, 289 (1995)CrossRefGoogle Scholar
  4. 4.
    H. Iwahara, Solid State Ionics. 86–88, 9 (1996)CrossRefGoogle Scholar
  5. 5.
    T. Schober, Solid State Ionics 162–163, 277 (2003)CrossRefGoogle Scholar
  6. 6.
    N. Ito, M. Iijima, K. Kimura, S. Iguchi, J. Power Source. 152, 200 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Matsumoto, I. Nomura, S. Okada, T. Ishihara, Solid State Ionics. 179, 1486–1489 (2008)CrossRefGoogle Scholar
  8. 8.
    D. Lybye, N. Bonanos, Solid State Ionics. 125, 339 (1999)CrossRefGoogle Scholar
  9. 9.
    J. Han, Z. Wen, J. Zhang, B. Lin, X. Wu, J. Electroceram. 22, 20 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Kato, H. Yugami, J. Electroceram. 18, 219 (2007)CrossRefGoogle Scholar
  11. 11.
    T. Norby, N. Christiansen, Solid State Ionics. 77, 240 (1995)CrossRefGoogle Scholar
  12. 12.
    K. Amezawa, S. Kjelstrup, T. Norby, Y. Ito, J. Electrochem. Soc. 145, 3313 (1998)CrossRefGoogle Scholar
  13. 13.
    K. Amezawa, H. Maekawa, Y. Tomii, N. Yamamoto, Solid State Ionics. 145, 233 (2001)CrossRefGoogle Scholar
  14. 14.
    N. Kitamura, K. Amezawa, Y. Tomii, N. Yamamoto, Solid State Ionics 162, 161 (2003)CrossRefGoogle Scholar
  15. 15.
    K. Amezawa, Y. Kitajima, Y. Tomii, N. Yamamoto, Electrochem. Solid St. 7, A511 (2004)CrossRefGoogle Scholar
  16. 16.
    K. Amezawa, Y. Tomii, N. Yamamoto, Solid State Ionics. 175, 569 (2004)CrossRefGoogle Scholar
  17. 17.
    K. Amezawa, Y. Tomii, N. Yamamoto, Solid State Ionics. 176, 135 (2005)CrossRefGoogle Scholar
  18. 18.
    K. Amezawa, Y. Kitajima, Y. Tomii, N. Yamamoto, M. Wideroe, T. Norby, Solid State Ionics. 176, 2867 (2005)CrossRefGoogle Scholar
  19. 19.
    K. Amezawa, Y. Uchimoto, Y. Tomii, Solid State Ionics. 177, 2407 (2006)CrossRefGoogle Scholar
  20. 20.
    N. Kitamura, K. Amezawa, Y. Uchimoto, Y. Tomii, T. Hanada, N. Yamamoto, Solid State Ionics. 177, 2369 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Amezawa, Y. Tomii, N. Yamamoto, Solid State Ionics. 176, 143 (2005)CrossRefGoogle Scholar
  22. 22.
    K. Amezawa, Y. Nishikawa, Y. Tomii, N. Yamamoto, J. Electrochem. Soc. 152, A1060 (2005)CrossRefGoogle Scholar
  23. 23.
    V. Nalini, R. Haugsrud, T. Norby, Solid State Ionics. 181, 1264 (2010)CrossRefGoogle Scholar
  24. 24.
    V. Nalini, K. Amezawa, W. Xing, T. Norby, J. Electrochem. Soc. 157, B1491 (2010)CrossRefGoogle Scholar
  25. 25.
    I. Hammas, K. Horchani-Naifer, M. Férid, J. Rare Earth. 28, 321 (2010)CrossRefGoogle Scholar
  26. 26.
    S.R. Phadke, J.C. Nino, J. Am. Ceram. Soc. 94, 1817 (2011)CrossRefGoogle Scholar
  27. 27.
    K. Amezawa, N. Takahashi, N. Kitamura, Y. Tomii, N. Yamamoto, Solid State Ionics. 175, 575 (2004)CrossRefGoogle Scholar
  28. 28.
    R. Haugsrud, T. Norby, Nature Mat. 5, 193 (2006)CrossRefGoogle Scholar
  29. 29.
    F.A. Kröger, H.J. Vink, in Solid state physics, vol. 3, ed. by F. Steitz, D. Turnbull (Academic, New York, 1956)Google Scholar
  30. 30.
    S. Gopalan, A.V. Virkar, J. Electrochem. Soc. 140, 1060 (1993)CrossRefGoogle Scholar
  31. 31.
    M.J. Scholten, J. Schoonman, J.C. van Miltenburg, H.A.J. Oonk, Solid State Ionics. 61, 83 (1993)CrossRefGoogle Scholar
  32. 32.
    N. Bonanos, K.S. Knight, B. Ellis, Solid State Ionics. 79, 161 (1995)CrossRefGoogle Scholar
  33. 33.
    K.D. Kreuer, Solid State Ionics. 97, 1 (1997)CrossRefGoogle Scholar
  34. 34.
    H. Matsumoto, S. Okada, S. Hashimoto, K. Sasaki, R. Yamamoto, M. Enoki, T. Ishihara, Ionics 13, 93 (2007)CrossRefGoogle Scholar
  35. 35.
    H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, Electrochem. Solid-St. 10, B77 (2007)CrossRefGoogle Scholar
  36. 36.
    L. Niinisto, M. Keskela, in Handbook on the physics and chemistry of rare earths, ed. by K.A. Gschneidner Jr., L. Eyring, vol. 9 (Elsevier, Amsterdam, 1987)Google Scholar
  37. 37.
    M.S. Wong, E.R. Kreidler, J. Am. Ceram. Soc. 70, 396 (1987)CrossRefGoogle Scholar
  38. 38.
    M. Tsuhako, S. Ikeuchi, T. Matsuo, I. Motooka, M. Kobayashi, Bull. Chem. Soc. Jpn. 52, 1034 (1979)CrossRefGoogle Scholar
  39. 39.
    ICSD #411260: J.M. Cole, M.R. Lees, J.A.K. Howard, R.J. Newport, G.A. Saunders, E. Schonherr, J. Solid State Chem. 150, 377 (2000)Google Scholar
  40. 40.
    E.G. Tselebrovskaya, B.F. Dzhurinskii, O.I. Lyamina, Inorg. Mater. 32, 52 (1997)Google Scholar
  41. 41.
    ICSD#82718: K. K. Doklady, N. E. Kuz’mina, B. F. Dzhurinskii, E. G. Tselebrovskaya, Doklady Akad. Nauk. 341, 644 (1995)Google Scholar
  42. 42.
    S. Ku, J. Zhang, J. Lumin. 122–123, 500 (2007)Google Scholar
  43. 43.
    Y. Jin, W. Qin, J. Zhang, Y. Wang, C. Cao, J. Zhang, X. Ren, G. Wang, G. Wei, L. Wang, L. Jin, P. Zhu, Mater. Lett. 62, 3146 (2008)CrossRefGoogle Scholar
  44. 44.
    J. Zhang, S. Lu, J. Nanosci. Nanotech. 8, 1410 (2008)Google Scholar
  45. 45.
    A.S. Nowich, A.V. Vaysleyb, Solid State Ionics. 97, 17 (1997)CrossRefGoogle Scholar
  46. 46.
    K. Amezawa, H. Takahashi, A. Kuwabara, A. Unemoto, T. Kawada, Int. J. Hydrogen Energ. 37 (2012) 7995-8003.Google Scholar
  47. 47.
    H. Takahashi, Master’s Thesis (2011), Tohoku University.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  2. 2.Graduate School of Environmental StudiesTohoku UniversitySendaiJapan

Personalised recommendations