Journal of Electroceramics

, Volume 24, Issue 4, pp 270–287 | Cite as

Preparation and characterization of copper based cermet anodes for use in solid oxide fuel cells at intermediate temperatures

Article

Abstract

Two Cu-based anode cermets suitable for direct hydrocarbon oxidation in Solid Oxide Fuel Cells (SOFC) based on yttria stabilized zirconia (YSZ) electrolyte were tested in the temperature range (500–800°C). The ceramic components were CeO2 and the perovskite La0.75Sr0.25Cr0.5Mn0.5O3−d (LSCM). The cermets were made in both the form of pellets and films applied onto the YSZ electrolytes. Pellets exhibited good mechanical strength and resistance to fracture in both oxidized and reduced state. Cu–LSCM cermets exhibited good redox cycling behavior between 700–800°C. Reduction temperature plays a significant role on final morphology with Cu segregation occurring at 800°C. Cu–LSCM films were found to exhibit lower polarization resistances than Cu–CeO2 under 5% H2. Examination of the data revealed a poorer contact of the Cu–CeO2 electrode with the YSZ surface than the Cu–LSCM electrode. Reduction temperature should be less than 750°C to ensure suitable microstructure and adhesion of both film electrodes with the electrolyte.

Keywords

SOFC Cu anodes Cermet LSCM CeO2 

Notes

Acknowledgements

The authors express their sincere appreciation to Royal Society, UK and ESF (OSSEP program) for short visits grants of N. E. Kiratzis to University of St. Andrews. N. E. Kiratzis is grateful to EPEAEK II Initiative “Project #2.2.4 Archimedes: Support of Research in Technological Education Institutes” (financed 75% by EU and 25% by the Greek government) for funding.

We wish to thank S. Tao and C. Savaniu of Prof. Irvine’s research group for help with the experiments.

N. E. Kiratzis expresses his sincerest appreciation to Prof. M. Stoukides of Aristotle University of Thessaloniki for a one year sabbatical to the Department of Chemical Engineering and the Center for Research and Technology Hellas (CERTH)—Chemical Process Engineering Research Institute (CPERI).

We greatly acknowledge the help of T. Vavaleskou, A. Evdou and L. Nalbadian of CERTH for their help in sample characterization and useful discussions.

References

  1. 1.
    B.C.H. Steele, A. Heinzel, Nature. 414, 345 (2001). doi: 10.1038/35104620 CrossRefPubMedADSGoogle Scholar
  2. 2.
    M. Stoukides, Catal. Rev. Sci. Eng. 42(1&2), 1 (2000). doi: 10.1081/CR-100100259 CrossRefGoogle Scholar
  3. 3.
    A.L. Sauvet, J.T.S. Irvine, Solid. State. Ion. 167, 1 (2004). doi: 10.1016/j.ssi.2003.11.021 CrossRefGoogle Scholar
  4. 4.
    A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Nat. Mater. 3, 17 (2004). doi: 10.1038/nmat1040 CrossRefPubMedADSGoogle Scholar
  5. 5.
    S. McIntosh, R.J. Gorte, Chem. Rev. 104, 4845 (2004). doi: 10.1021/cr020725g CrossRefPubMedGoogle Scholar
  6. 6.
    M. Mogensen, S. Primdahl, M.J. Jørgensen, C. Bagger, J. Electroceram. 5(2), 141 (2000). doi: 10.1023/A:1009910202330 CrossRefGoogle Scholar
  7. 7.
    S. Hamakawa, T. Hayakawa, A.P.E. York, T. Tsunoda, Y.S. Yoon, K. Suzuki, M. Shimizu, K. Takehira, J. Electrochem. Soc. 143(4), 1264 (1996). doi: 10.1149/1.1836627 CrossRefGoogle Scholar
  8. 8.
    M. Stoukides, Ind. Eng. Chem. Res. 27(10), 1745 (1988). doi: 10.1021/ie00082a002 CrossRefGoogle Scholar
  9. 9.
    E. Ramirez-Cabrera, A. Atkinson, D. Chadwick, Solid. State. Ion. 136, 825 (2000). doi: 10.1016/S0167-2738(00)00507-5 CrossRefGoogle Scholar
  10. 10.
    O.A. Marina, M. Mogensen, Appl. Catal. A. 189, 117 (1999). doi: 10.1016/S0926-860X(99)00259-8 CrossRefGoogle Scholar
  11. 11.
    S.D. Park, J.M. Vohs, R.J. Gorte, Nature. 404, 265 (2000). doi: 10.1038/35005040 CrossRefPubMedADSGoogle Scholar
  12. 12.
    H. Kim, S. Park, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 148, A693 (2001). doi: 10.1149/1.1374216 CrossRefGoogle Scholar
  13. 13.
    S. Park, R.J. Gorte, J.M. Vohs, Appl. Catal. A 200, 55 (2000). doi: 10.1016/S0926-860X(00)00650-5 CrossRefGoogle Scholar
  14. 14.
    R.J. Gorte, S. Park, J.M. Vohs, C. Wang, Adv. Mater. 12, 1465 (2000). doi: 10.1002/1521-4095(200010)12:19<1465::AID-ADMA1465>3.0.CO;2-9 CrossRefGoogle Scholar
  15. 15.
    S. McIntosh, J.M. Vohs, R.J. Gorte, Electrochim. Acta. 47, 3815 (2002). doi: 10.1016/S0013-4686(02)00352-3 CrossRefGoogle Scholar
  16. 16.
    H. He, R.J. Gorte, J.M. Vohs, Electrochem. Solid-State. Lett. 8(6), A279 (2005). doi: 10.1149/1.1896469 CrossRefGoogle Scholar
  17. 17.
    M.D. Gross, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 153, A1386 (2006). doi: 10.1149/1.2201534 CrossRefGoogle Scholar
  18. 18.
    S. Jung, C. Lu, H. He, K. Ahn, R.J. Gorte, J.M. Vohs, J. Power Sources 154, 42 (2006). doi: 10.1016/j.jpowsour.2005.04.018 CrossRefGoogle Scholar
  19. 19.
    M.D. Gross, J.M. Vohs, R.J. Gorte, Electrochim. Acta 52, 1951 (2007). doi: 10.1016/j.electacta.2006.08.005 CrossRefGoogle Scholar
  20. 20.
    O. Costa-Nunes, R.J. Gorte, J.M. Vohs, J. Mater, Chem. 15, 1520 (2005). doi: 10.1039/b416670a Google Scholar
  21. 21.
    N. Kiratzis, P. Holtappels, C.E. Hatchwell, M. Mogensen, J.T.S. Irvine, Fuel. Cells. (Weinh.). 1, 211 (2001). doi: 10.1002/1615-6854(200112)1:3/4<211::AID-FUCE211>3.0.CO;2-H CrossRefGoogle Scholar
  22. 22.
    J.T.S. Irvine, A. Sauvet, Fuel. Cells. (Weinh.). 1, 205 (2001). doi: 10.1002/1615-6854(200112)1:3/4<205::AID-FUCE205>3.0.CO;2-5 CrossRefGoogle Scholar
  23. 23.
    N.Q. Minh, J. Am. Ceram. Soc. 76(3), 563 (1993). doi: 10.1111/j.1151-2916.1993.tb03645.x CrossRefADSGoogle Scholar
  24. 24.
    H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Solid. State. Ion. 52, 43 (1992). doi: 10.1016/0167-2738(92)90090-C CrossRefGoogle Scholar
  25. 25.
    J. Sfeir, P.A. Buffat, P. Mockli, N. Xanthopoulos, R. Vasquez, H.J. Mathieu, J. Van herle, K.R. Thampi, J. Catal. 202, 229 (2001). doi: 10.1006/jcat.2001.3286 CrossRefGoogle Scholar
  26. 26.
    S. Tao, J.T.S. Irvine, Nat. Mater. 2, 320 (2003). doi: 10.1038/nmat871 CrossRefPubMedADSGoogle Scholar
  27. 27.
    S. Tao, J.T.S. Irvine, J. Electrochem. Soc. 151(2), A252 (2004). doi: 10.1149/1.1639161 CrossRefGoogle Scholar
  28. 28.
    V.V. Kharton, E.V. Tsipis, I.P. Marozau, A.P. Viskup, J.R. Frade, J.T.S. Irvine, Solid State Ion. 178, 101 (2007). doi: 10.1016/j.ssi.2006.11.012 CrossRefGoogle Scholar
  29. 29.
    E.S. Raj, J.A. Kilner, J.T.S. Irvine, Solid State Ion. 177, 1747 (2006). doi: 10.1016/j.ssi.2006.04.011 CrossRefGoogle Scholar
  30. 30.
    S. Tao, J.T.S. Irvine, Chem. Mater. 18, 5453 (2006). doi: 10.1021/cm061413n CrossRefGoogle Scholar
  31. 31.
    S.M. Plint, P.A. Connor, S. Tao, J.T.S. Irvine, Solid State Ion. 177, 2005 (2006). doi: 10.1016/j.ssi.2006.02.025 CrossRefGoogle Scholar
  32. 32.
    S. Tao, J.T.S. Irvine, S.M. Plint, J. Phys. Chem. B 110, 21771 (2006). doi: 10.1021/jp062376q CrossRefPubMedGoogle Scholar
  33. 33.
    D.M. Bastidas, S. Tao, J.T.S. Irvine, J. Mater. Chem. 16, 1603 (2006). doi: 10.1039/b600532b CrossRefGoogle Scholar
  34. 34.
    J.C. Ruiz-Morales, J. Canales-Vázquez, B. Ballesteros-Pérez, J. Peña-Martínez, D. Marrero-López, J.T.S. Irvine, P. Núñez, J. Eur. Ceram. Soc. 27, 4223 (2007). doi: 10.1016/j.jeurceramsoc.2007.02.117 CrossRefGoogle Scholar
  35. 35.
    J.C. Ruiz-Morales, J. Canales-Vázquez, D. Marrero-López, J.T.S. Irvine, P. Núñez, Electrochim. Acta. 52, 7217 (2007). doi: 10.1016/j.electacta.2007.05.060 CrossRefGoogle Scholar
  36. 36.
    S. Primdahl, M. Mogensen, Solid. State. Ion 152–153, 597 (2002). doi: 10.1016/S0167-2738(02)00393-4 CrossRefGoogle Scholar
  37. 37.
    S.P. Jiang, S.H. Chan, J. Mater. Sci. 39, 4405 (2004). doi: 10.1023/B:JMSC.0000034135.52164.6b CrossRefADSGoogle Scholar
  38. 38.
    E.P. Murray, T. Tsai, S.A. Barnett, Nature. 400, 649–651 (1999). doi: 10.1038/21781 CrossRefADSGoogle Scholar
  39. 39.
    S. McIntosh, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 150(10), A1305 (2003). doi: 10.1149/1.1603246 CrossRefGoogle Scholar
  40. 40.
    R.J. Gorte, J.M. Vohs, S. McIntosh, Solid. State. Ion. 175, 1 (2004). doi: 10.1016/j.ssi.2004.09.036 CrossRefGoogle Scholar
  41. 41.
    S.-I. Lee, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 151(9), A1319 (2004). doi: 10.1149/1.1774184 CrossRefGoogle Scholar
  42. 42.
    S.-I. Lee, K. Ahn, J.M. Vohs, R.J. Gorte, Electrochem. Solid-State Lett. 8, A48 (2005). doi: 10.1149/1.1833678 CrossRefGoogle Scholar
  43. 43.
    O. Costa-Nunes, R.J. Gorte, J.M. Vohs, J. Power Sources 141, 241 (2005). doi: 10.1016/j.jpowsour.2004.09.022 CrossRefGoogle Scholar
  44. 44.
    C. Sun, U. Stimming, J. Power Sources 171, 247 (2007). doi: 10.1016/j.jpowsour.2007.06.086 CrossRefGoogle Scholar
  45. 45.
    S.P. Jiang, X.J. Chen, S.H. Chan, J.T. Kwok, J. Electrochem. Soc. 153, A850 (2006). doi: 10.1149/1.2179347 CrossRefGoogle Scholar
  46. 46.
    H.J. Cho, G.M. Choi, J. Power. Sources. 176, 96 (2008). doi: 10.1016/j.jpowsour.2007.09.118 CrossRefGoogle Scholar
  47. 47.
    B.C.H. Steele, J. Mater. Sci. 36, 1053 (2001). doi: 10.1023/A:1004853019349 CrossRefGoogle Scholar
  48. 48.
    Y. Jiang, A.V. Virkar, J. Electrochem. Soc. 150(7), A942 (2003). doi: 10.1149/1.1579480 CrossRefGoogle Scholar
  49. 49.
    T. Tsai, S.A. Barnett, Solid State Ion. 98, 191 (1997). doi: 10.1016/S0167-2738(97)00113-6 CrossRefGoogle Scholar
  50. 50.
    J. Liu, S.A. Barnett. Solid State Ion. 158, 11 (2003). doi: 10.1016/S0167-2738(02)00769-5 CrossRefGoogle Scholar
  51. 51.
    H. Kim, C. Lu, W.L. Worrell, J.M. Vohs, R.J. Gorte. J. Electrochem. Soc. 149(3), A247 (2002). doi: 10.1149/1.1445170 CrossRefGoogle Scholar
  52. 52.
    E.P. Murray, S.J. Harris, J. Liu, S.A. Barnett. Electrochem. Solid-State Lett. 9(6), A292 (2006). doi: 10.1149/1.2192643 CrossRefGoogle Scholar
  53. 53.
    J.C. Ruiz-Morales, J. Canales-Vázquez, J. Peña-Martínez, D. Marrero-López, P. Núñez. Electrochim. Acta 52(1), 278 (2006). doi: 10.1016/j.electacta.2006.05.006 CrossRefGoogle Scholar
  54. 54.
    H. Tu, U. Stimming. J. Power Sources 127, 284 (2004). doi: 10.1016/j.jpowsour.2003.09.025 CrossRefGoogle Scholar
  55. 55.
    T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, M. Mori, T. Iwata. J. Electrochem. Soc. 137(10), 3042 (1990). doi: 10.1149/1.2086156 CrossRefGoogle Scholar
  56. 56.
    V. Krishnan, S. McIntosh, R.J. Gorte, J.M. Vohs. Solid State Ion. 166(1–2), 191 (2004). doi: 10.1016/j.ssi.2003.10.007 CrossRefGoogle Scholar
  57. 57.
    A. Weber, B. Sauer, A.C. Müller, D. Herbstritt, E. Ivers-Tiffée, Solid. State. Ion 152–153, 543 (2002). doi: 10.1016/S0167-2738(02)00359-4 CrossRefGoogle Scholar
  58. 58.
    S. Park, R. Cracium, J.M. Vohs, R.J. Gorte. J. Electrochem. Soc. 146(10), 3603 (1999). doi: 10.1149/1.1392521 CrossRefGoogle Scholar
  59. 59.
    Y. Matsuzaki, I. Yasuda. Solid State Ion. 132, 261 (2000). doi: 10.1016/S0167-2738(00)00653-6 CrossRefGoogle Scholar
  60. 60.
    J.E. Bauerle, J. Phys. Chem. Solids. 30, 2657 (1969). doi: 10.1016/0022-3697(69)90039-0 CrossRefADSGoogle Scholar
  61. 61.
    I. Gibson, PhD Thesis, U. Aberdeen (1995)Google Scholar
  62. 62.
    J.H. Zar, Biostatistical Analysis, 4th edn. (Prentice-Hall, New Jersey, 1999)Google Scholar
  63. 63.
    J.R. Macdonald, Impedance Spectroscopy: Theory, Experiments and Applications (Wiley, New Jersey, 1987)Google Scholar
  64. 64.
    A. Tsoga, A. Naoumidis, D. Stover. Solid State Ion. 135, 403 (2000). doi: 10.1016/S0167-2738(00)00477-X CrossRefGoogle Scholar
  65. 65.
    N.M. Sammes, G.A. Tompsett, Zhihong Cai. Solid State Ion. 121, 121 (1999). doi: 10.1016/S0167-2738(98)00538-4 CrossRefGoogle Scholar
  66. 66.
    H. He, J.M. Vohs, R.J. Gorte. J. Electrochem. Soc. 150, A1470 (2003). doi: 10.1149/1.1614268 CrossRefGoogle Scholar
  67. 67.
    O.H. Kwon, G.M. Choi. Solid State Ion. 177, 3057 (2006). doi: 10.1016/j.ssi.2006.07.039 CrossRefGoogle Scholar
  68. 68.
    I.R. Gibson, J.T.S. Irvine. J. Mater. Chem. 6, 895 (1996). doi: 10.1039/jm9960600895 CrossRefGoogle Scholar
  69. 69.
    D.W. Dees, T.D. Claar, T.E. Easler, D.C. Fee, F.C. Mrazek. J. Electrochem. Soc. 134(9), 2141 (1987). doi: 10.1149/1.2100839 CrossRefGoogle Scholar
  70. 70.
    M. Mogensen, T. Lindegaard, U.R. Hansen, G. Mogensen. J. Electrochem. Soc. 141(8), 2122 (1994). doi: 10.1149/1.2055072 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of ChemistryUniversity of St. AndrewsFifeUK
  2. 2.Technological Research Center (TRC)Technological Education Institute (TEI) of West MacedoniaKozaniGreece

Personalised recommendations