Journal of Electroceramics

, 23:72

Micro-computer tomography—An aid in the investigation of structural changes in lead zirconate titanate ceramics after temperature-humidity bias testing

  • I. P. Lipscomb
  • P. M. Weaver
  • J. Swingler
  • J. W. McBride


Lead zirconate titanate ceramic actuators are extensively used in electronic and electro-mechanical devices. Under humid conditions with a d.c. bias leakage currents increase power consumption In some materials the increasing leakage current is accompanied by the evolution of features on the anode surface, but little is known of any changes to the internal structure of the material. This research applies an advanced imaging technique (micro-computer tomography) to non-destructively investigate these features. This allows the evolution of internal features over time to be studied. The findings reveal that the microstructure of the ceramic was significantly altered during environmental testing.


Lead–titanate–zirconate PZT Micro computer tomography Voids Breakdown Temperature humidity bias testing 


  1. 1.
    B. Andersen, et al, in Actuator 2004, Bremen, June 2004, p. 64.Google Scholar
  2. 2.
    J. Pritchard, C.R. Bowen, F. Lowrie, Br. Ceram. Trans. 100, 265 (2001) doi:10.1179/096797801681549 CrossRefGoogle Scholar
  3. 3.
    H.H.A. Krueger, D. Berlincourt, J. Acoust. Soc. Am. 33, 1339 (1961) doi:10.1121/1.1908435 CrossRefADSGoogle Scholar
  4. 4.
    M.G. Cain, M. Stewart, M.G. Gee, Degradation of Piezoelectric Materials (National Physical Laboratory, Teddington, 1999)Google Scholar
  5. 5.
    G.B. Hounsfield, A Method of and apparatus for examination of a body by radiation such as X or Gamma radiation, in, Great Britian (1972).Google Scholar
  6. 6.
    G.N. Hounsfield, Br. J. Radiol. 46, 1016 (1973)PubMedCrossRefGoogle Scholar
  7. 7.
    D. Braz, L.M.G. da Motta, R.T. Lopes, Appl. Radiat. Isot. 50, 661 (1999), doi:10.1016/S0969–8043(98)00122–5 CrossRefGoogle Scholar
  8. 8.
    A.C. Kak, Proc. IEEE 67, 1245 (1979), doi:10.1109/PROC.1979.11440 CrossRefGoogle Scholar
  9. 9.
    P.E. Sinnett-Jones, M. Browne, W. Ludwig, J.Y. Buffiere, I. Sinclair, Biomaterials. 26, 6460 (2005), doi:10.1016/j.biomaterials.2005.04.064 PubMedCrossRefGoogle Scholar
  10. 10.
    I. P. Lipscomb, P. M. Weaver, J. Swingler, J. W. McBride, Sens. Actuators 142, 2 (2008)CrossRefGoogle Scholar
  11. 11.
    F.H. Kreuger, U. Fromm, Jpn. J. Appl. Phys. Part 1—Regular Papers Short Notes & Review Papers 33, 1079 (1994)Google Scholar
  12. 12.
    X.H. Zhang, F. Rong, Z.K. Jia, F.J. Ke, M.F. Xia, Y.L. Bai, Theor. Appl. Fract. Mech. 41, 381 (2004) doi:10.1016/j.tafmec.2003.11.020 CrossRefGoogle Scholar
  13. 13.
    C.F. Gao, N. Noda, Appl. Phys. Lett. 86 (2005)Google Scholar
  14. 14.
    M. Goldman, A. Goldman, J. Gatellet, IEE Proc. Sci. Meas. Technol. 142, 11 (1995) doi:10.1049/ip-smt:19951633 CrossRefGoogle Scholar
  15. 15.
    P.J. Withers, Mater. Today. 10, 26 (2007) doi:10.1016/S1369–7021(07)70305-X CrossRefGoogle Scholar
  16. 16.
    H. Tsuritani, T. Sayama, K. Uesugi, T. Takayanagi, T. Mori, J. Electron. Packaging 129, 434 (2007) doi:10.1115/1.2804093 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I. P. Lipscomb
    • 1
  • P. M. Weaver
    • 2
  • J. Swingler
    • 1
  • J. W. McBride
    • 1
  1. 1.Electro-Mechanical Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK
  2. 2.Servocell Ltd, 1 Astra CentreEssexUK

Personalised recommendations