Journal of Electroceramics

, Volume 23, Issue 1, pp 25–36 | Cite as

Effect of time and polarization on kinetics of the oxygen electrode reaction at an Au∣YSZ interface

Article

Abstract

The oxygen electrode reaction at the interface gold∣yttria stabilized zirconia was investigate using microelectrodes by chronoamperometry and electrochemical impedance spectroscopy, with emphasis put on effect of prolonged polarization of the electrode. Two interesting phenomena were observed: (a) generally, the long-lasting negative polarization resulted in a slow monotonous decrease of the current flowing through the electrode, (b) the reaction mechanism was less complicated for the polarized then unpolarized electrodes, which resulted in a relatively simply equivalent circuit used for modelling the former ones. On the basis of the data obtained, the apparent exchange currents normalized vs. the three phase boundary length and Tafel slopes were determined. The methods of determining the three phase boundary length were discussed. The reconnaissance data obtained for the Pt microelectrode are also reported.

Keywords

Oxygen electrode Au microelectrode YSZ Three phase boundary Exchange current 

Notes

Acknowledgment

One of the authors (PT) appreciates the financial support from the status founds 11.11.210.118.

References

  1. 1.
    M. Yashima, M. Kakihana, M. Yoshimura, Solid State Ion. 86–88, 1131 (1996) DOI  10.1016/0167-2738(96)00386-4 CrossRefGoogle Scholar
  2. 2.
    O. Yamamoto, Electrochim. Acta. 45, 2423 (2000) DOI  10.1016/S0013-4686(00)00330-3 CrossRefGoogle Scholar
  3. 3.
    W. Weppner, J. Solid State Chem. 20, 305 (1977) DOI  10.1016/0022-4596(77)90167-0 CrossRefADSGoogle Scholar
  4. 4.
    M.F. Trubelja, V.S. Stubicam, Solid State Ion. 49, 89 (1991) DOI  10.1016/0167-2738(91)90073-K CrossRefGoogle Scholar
  5. 5.
    V.V. Kharton, F.M.B. Marques, A. Atkinson, in Fuel Cells Compendium, ed. by N.P. Brandon, D. Thompsett. Transport Properties of Solid Oxide Electrolyte Ceramics; a Brief Review (Elsevier, Amsterdam, 2005), p. 189Google Scholar
  6. 6.
    A. Mitterdorfer, L.J. Gauckler, Solid State Ion. 117, 203 (1999) DOI  10.1016/S0167-2738(98)00340-3 CrossRefGoogle Scholar
  7. 7.
    S.N. Shkerin, S. Gormsen, S. Primdahl, M. Mogensen, Russ. J. Electrochem. 39, 1058 (2003) DOI  10.1023/A:1026163118315 CrossRefGoogle Scholar
  8. 8.
    A.M. Svensson, S. Sunde, K. Nisancioglu, J. Electrochem. Soc. 145, 1390 (1998) DOI  10.1149/1.1838471 CrossRefGoogle Scholar
  9. 9.
    S.B. Adler, Solid State Ion. 111, 125 (1998) DOI  10.1016/S0167-2738(98)00179-9 CrossRefGoogle Scholar
  10. 10.
    J. Fleig, Solid oxide fuel cell cathodes: Polarization mechanisms and modelling of the electrochemical performance, in Annual Review of Material Research, 2003, v.33, p.361. DOI 10.1146/annurev.matsci.33.022802.093258Google Scholar
  11. 11.
    A. Parthasarathy, C.R. Martin, J. Electrochem. Soc. 138, 916 (1991) DOI  10.1149/1.2085747 CrossRefGoogle Scholar
  12. 12.
    F.N. Büchi, M. Wakizoe, S. Srinivasan, J. Electrochem. Soc. 143, 927 (1996) DOI  10.1149/1.1836560 CrossRefGoogle Scholar
  13. 13.
    P.D. Beattie, V.I. Basura, S. Holdcroft, J. Electroanal. Chem. 468, 180 (1999) DOI  10.1016/S0022-0728(99)00164-3 CrossRefGoogle Scholar
  14. 14.
    S. Mitsushima, N. Araki, N. Kamiya, K. Ota, J. Electrochem. Soc. 149, A1370 (2002) DOI  10.1149/1.1506164 CrossRefGoogle Scholar
  15. 15.
    J. Fleig, Solid State Ion. 161, 279 (2003) DOI  10.1016/S0167-2738(03)00217-0 CrossRefGoogle Scholar
  16. 16.
    M.W. Breiter, K. Leeb, G. Fafilek, J. Electroanal. Chem. 434, 129–137 (1997) DOI  10.1016/S0022-0728(97)00123-X CrossRefGoogle Scholar
  17. 17.
    M.W. Breiter, K. Leeb, G. Fafilek, Electrochim. Acta. 43, 325 (1998) DOI  10.1016/S0013-4686(97)00062-5 CrossRefGoogle Scholar
  18. 18.
    M. Sase, D. Ueno, K. Yashiro, A. Kaimai, T. Kawaga, J. Mizusaki, J. Phys.Chem. Solids. 66, 343 (2005) DOI  10.1016/j.jpcs.2004.06.057 CrossRefADSGoogle Scholar
  19. 19.
    E. Ivers-Tiffée, A. Weber, K. Schmid, V. Krebs, Solid State Ion. 174, 223 (2004) DOI  10.1016/j.ssi.2004.05.031 CrossRefGoogle Scholar
  20. 20.
    S.P. Jiang, J.G. Love, Solid State Ion. 138, 183 (2001) DOI  10.1016/S0167-2738(00)00806-7 CrossRefGoogle Scholar
  21. 21.
    F.S. Baumann, J. Fleig, M. Konuma, U. Starke, H.-U. Habermeier, J. Maier, J. Electrochem. Soc. 152, A2074 (2005) DOI  10.1149/1.2034529 CrossRefGoogle Scholar
  22. 22.
    X.J. Chen, K.A. Khor, S.H. Chan, Solid State Ion. 167, 379 (2004) DOI  10.1016/j.ssi.2003.08.049 CrossRefGoogle Scholar
  23. 23.
    S.P. Jiang, J. Power Sources. 124, 390 (2003) DOI  10.1016/S0378-7753(03)00814-0 CrossRefGoogle Scholar
  24. 24.
    W. Wang, S.P. Jiang, ECS Trans. 7(1), 875 (2007)CrossRefGoogle Scholar
  25. 25.
    J. Rutman, S. Raz, I. Riess, Solid State Ion. 177, 1771 (2006) DOI  10.1016/j.ssi.2006.04.012 CrossRefGoogle Scholar
  26. 26.
    A. Hashibon, S. Raz, I. Riess, Solid Satate Ion. 149, 167 (2002) DOI  10.1016/S0167-2738(02)00177-7 CrossRefGoogle Scholar
  27. 27.
    L. Bay, T. Jacobsen, Solid State Ion. 93, 201 (1997) DOI  10.1016/S0167-2738(96)00526-7 CrossRefGoogle Scholar
  28. 28.
    T. Jacobsen, B. Zachau-Christiansen, L. Bay, M. Juhl Jørgensen, Electrochim. Acta. 46, 1019 (2001) DOI  10.1016/S0013-4686(00)00689-7 CrossRefGoogle Scholar
  29. 29.
    T. Jacobsen, L. Bay, Electrochim. Acta. 47, 2177 (2002) DOI  10.1016/S0013-4686(02)00094-4 CrossRefGoogle Scholar
  30. 30.
    J. Newman, J. Electrochem. Soc. 113, 501 (1966) DOI  10.1149/1.2424003 CrossRefGoogle Scholar
  31. 31.
    A. Raźniak, P. Tomczyk, Materials Science (2008, in press). Available at //www.materialsscience.pwr.wroc.pl/index.php?id=3&abst=62#a62
  32. 32.
    R.S. Nicholson, I. Shain, Anal. Chem. 36, 706 (1964) DOI  10.1021/ac60210a007 CrossRefGoogle Scholar
  33. 33.
    J.M. Saveant, E. Vianello, ed. by J.S. Longmuir. Advances in Polarography, vol.1 (Pergamon, NY, 1960), p. 367Google Scholar
  34. 34.
    R.S. Nicholson, I. Shain, Anal. Chem. 36, 706 (1964) DOI  10.1021/ac60210a007 CrossRefGoogle Scholar
  35. 35.
    L. Rampazzo, J. Electroanal. Chem. 14, 117 (1967) DOI  10.1016/0022-0728(67)80137-2 CrossRefGoogle Scholar
  36. 36.
    P.A. Allen, A. Hickling, Trans. Faraday Soc. 53, 1626 (1957) DOI  10.1039/tf9575301626 CrossRefGoogle Scholar
  37. 37.
    N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993) DOI  10.1111/j.1151-2916.1993.tb03645.x CrossRefADSGoogle Scholar
  38. 38.
    J.F. Baumard, P. Abelard, in Advances in Ceramics, vol. 12, ed. by N. Claussen, M. Rϋhle, A.H. Heurer. Defect Structure and Transport Properties of ZrO 2 -Based Electrolytes (American Ceramic, Coloumbus, OH, 1984), p. 555Google Scholar
  39. 39.
    Fuel Cell Handbook. 5th edition by EG&G Services Parsons Inc., Science Application International Corporation (US Department of Energy, Morgantown, 2000), p.8–5Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Fuels and EnergyAGH—University of Science and TechnologyKrakowPoland
  2. 2.Department of Electrochemical Oxidation of FuelsInstitute of Physical Chemistry of the Polish Academy of SciencesWarsawPoland

Personalised recommendations