Journal of Electroceramics

, Volume 22, Issue 1–3, pp 145–149

An integrated microelectromechanical microwave switch based on piezoelectric actuation

  • Carsten Kügeler
  • Alexander Hennings
  • Ulrich Böttger
  • Rainer Waser
Article

Abstract

In the field of microwave applications, microelectromechanical systems (MEMS) are attractive devices in order to force miniaturization by on chip integration. Here, we describe the design, fabrication and testing of a silicon based micromachined switch using piezo-electrically actuated elements. The microwave circuit consists of a coplanar waveguide (CPW) design with two piezoelectric activated beams integrated between the middle line and the ground planes. During operation the beams short the CPW by two overhanging bridge contacts and therefore the transmission characteristics of the microwave circuit change. The CPW is realized by 3 µm thick electroplated copper to yield good transmission characteristics, whereas the clamped—clamped beams benefit from a 250 nm thin PZT film between 100 nm thin Pt electrodes on top of a SiO2 layer. By the use of double side clamped beams awkward stress compensation of the piezoelectric stack is omitted. Instead the system relies on some initial mechanical stress. Measurements prove deflections of more than 13 µm for a 1400 µm long beam with operation voltages below 10 V. This is in good agreement with finite element simulations. The novel RF-MEMS is predicted to reach an isolation (in “on” state) of more than 20 dB up to 15 GHz.

Keywords

RF-MEMS Piezoelectric Thin film PZT Integrated microwave switch 

References

  1. 1.
    D.L. Polla, Application of PZT thin films in microelectromechanical systems. SPIE 2046, 24–27 (1997)CrossRefGoogle Scholar
  2. 2.
    P. Muralt, Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–46 (2000)CrossRefADSGoogle Scholar
  3. 3.
    WTC, The RF MEMS market II, 2005–2009. www.wtc-consult.de (2005)
  4. 4.
    J. Bouchaud, H. Wicht, RF MEMS analysis, forecast and technology review, CHIP, the Business and Technical news Unaxis Semicond. 9, 26–29 (2003)Google Scholar
  5. 5.
    H.C. Lee, J.H. Park, J.Y. Park, H.J. Nam, J.U. Bu, Design, fabrication and RF performances of two different types of piezoelectrically actuated ohmic MEMS switches. J. Micromech. Microeng. 15, 2098–2104 (2005)CrossRefADSGoogle Scholar
  6. 6.
    J.Y. Park, H.C. Lee, Comparison of ultra-low voltage operated RF MEMS in-line switches with serial and shunt configurations. Integr. Ferroelectr. 13, 5 (2005)Google Scholar
  7. 7.
    J.H. Park, H.C. Lee, Y.H. Park, Y.D. Kim, C.H. Ji, J.U. Bu, H.J. Nam, A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator. J. Micromech. Microeng. 16, 2281–6 (2006)CrossRefADSGoogle Scholar
  8. 8.
    H.C. Lee, J.Y. Park, Bu, Piezoelectrically Actuated RF MEMS DC Contact Switches With Low Voltage Operation. IEEE Microw. Wirel. Compon. Lett. 15, 4 (2005)CrossRefGoogle Scholar
  9. 9.
    R.G. Polcawich, D. Judy, J.S. Pulskamp, S. Trolier-McKinstry, M. Dubey, Advances in Piezoelectrically Actuated RF MEMS Switches and Phase Shifters, Microwave Symposium, 2007(IEEE. MTT.2007), pp. 2083–2086, 3–8 June DOI 10.1109/MWSYM.2007.380297
  10. 10.
    B. McCarthy, G.G. Adams, N.E. McGruer, D. Potter, A dynamic model, including contact bounce, of an electrostatically actuated microswitch. J. Microelectromech. 11(3), 276–283 (2002)CrossRefGoogle Scholar
  11. 11.
    J.J. Yao, RF MEMS from a device perspective. J. Micromech. Microeng. 10, R9–R38 (2000)CrossRefGoogle Scholar
  12. 12.
    S. Melle, F. Flourens, D. Dubuc, K. Grenier, P. Pons, F. Pressecq, J. Kuchenbecker, J.L. Muraro, L. Bary, R. Plana, Reliability overview of RF MEMS devices and circuits (33rd Eur. Microw. Conf., Munich, 2003), pp. 37–40Google Scholar
  13. 13.
    J.Y. Park, G.H. Kim, K.W. Chung, J.U. Bu, Monolithically integrated micromachined RF MEMS capacitive switches. Sens. Actuat. A 89, 88–94 (2001)CrossRefGoogle Scholar
  14. 14.
    J. Oberhammer, G. Stemme, Design and fabrication aspects of an S-shaped film actuator based DC to RF MEMS switch. J. Microelectromech. Syst. 13(3), 421–428 (2004)CrossRefGoogle Scholar
  15. 15.
    H. Lee, R.A. Coutu Jr., S. Mall, P.E. Kladitis, Nanoindentation technique for characterizing cantilever beam style RF microelectromechanical systems (MEMS) switches. J. Micromech. Microeng. 15, 1230–1235 (2005)CrossRefADSGoogle Scholar
  16. 16.
    C. Kuegeler, M. Hoffmann, U. Boettger, R. Waser, Integration, electrical and electromechanical properties of PZT and PMN-PT thin films for MEMS applications. Proc. SPIE 4699, 114–123 (2002)CrossRefADSGoogle Scholar
  17. 17.
    C. Kuegeler, S. Tappe, U. Boettger, R. Waser, Piezoelectric actuated MEMS for integrated RF switches based on PZT thin film bridges. Ferroelectrics 338, 89–95 (2006)CrossRefGoogle Scholar
  18. 18.
    I. Wolff, Coplanar Microwave Integrated Circuits (Wiley, Hoboken, 2006)CrossRefGoogle Scholar
  19. 19.
    C. Kuegeler, P. Gerber, U. Boettger, R. Waser, Thickness dependence of piezoelectric properties for PZT thin films with regard to MEMS applications. Integr. Ferroelectr. 54, 527–535 (2003)CrossRefGoogle Scholar
  20. 20.
    N.I. Dib, M. Gupta, G.E. Ponchak, L.P.B. Kathei, Characterization of asymmetric coplanar waveguide discontinuities. IEEE Trans. MTT. 41, 1549–1558 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Carsten Kügeler
    • 1
  • Alexander Hennings
    • 2
  • Ulrich Böttger
    • 2
  • Rainer Waser
    • 1
    • 2
  1. 1.IFF, Research Laboratories JülichJülichGermany
  2. 2.IWE II, RWTH-AachenAachenGermany

Personalised recommendations