Journal of Electroceramics

, Volume 22, Issue 1–3, pp 245–251 | Cite as

Dielectric measurements on a novel Ba1 − x Ca x TiO3 (BCT) bulk ceramic combinatorial library

  • Robert C. PullarEmail author
  • Yong Zhang
  • Lifeng Chen
  • Shoufeng Yang
  • Julian R. G. Evans
  • Andrei N. Salak
  • Dmitry A. Kiselev
  • Andrei L. Kholkin
  • Victor M. Ferreira
  • Neil McN. Alford


High-throughput combinatorial methods have the potential to discover new materials. They can investigate the effects of a wide range of dopants on the dielectric properties to optimize existing systems, encouraging the short innovation cycles that industry requires. We are currently part of a consortium of London Universities exploring methods of producing and measuring combinatorial libraries of microwave dielectric ceramics. The London University Search Instrument (LUSI) is a fully automated, high-throughput combinatorial robot that has the potential capability to produce combinatorial libraries consisting of large numbers of sintered bulk ceramic samples with varying composition, on alumna substrates. We have reported the manufacture and characterisation of Ba x Sr1 − x TiO3 libraries (x in steps of 0.1) as a proof of concept to demonstrate that the robot works and to confirm a compositional and functional change throughout the libraries, as well as proving that reliable measurements can be made on such small samples. Libraries of Ba1 − x Ca x TiO3 samples were made with varying compositions of x = 0–1 in steps of 0.1, and fired to 1400 °C for 1 h, by LUSI. X-ray diffraction (XRD) data agreed with the few previous reports on this little-studied system, namely that after initially forming a solid solution with Ca addition, above x = 0.2 a two phase system forms with values of 0.2 < x < 0.9, after which a single phase system again appears with values of x = 0.9 and higher. Dielectric measurements (100 Hz–1 MHz) showed a previously reported unusual initial increase in the Curie point with substitution up to x = 0.2, followed by a rapid decrease to below 125 K when x > 0.4. This initial increase has been attributed to the Ca substituting in both the Ba2+ A sites and the Ti4+ B sites of the perovskite up to x = 0.2, after which T c decreases greatly as the two phase system forms. Scanning probe microscopy and piezo response force microscopy (PFM) experiments also showed evidence of an increase in piezoelectricity with small amounts of x (0.1–0.2), followed by a decrease with increasing x.


Combinatorial High-throughput Dielectric Ferroelectric 



This work was funded by the Engineering and Physical Sciences Research Council (GR/S85245), and supported in part by the Treaty of Windsor (Anglo–Portuguese) Programme (Action B-24/06).


  1. 1.
    R.B. Merrifield, Solid phase peptide synthesis. I. The synthesis of a tetrapeptide J. Am. Chem. Soc. 85, 2149–2153 (1963)CrossRefGoogle Scholar
  2. 2.
    J.J. Hanak, The multiple sample concept in materials research; synthesis, compositional analysis and testing of entire multi-component systems J. Mater. Sci. 5, 964–971 (1970)CrossRefGoogle Scholar
  3. 3.
    T.P. Beales, C. Dineen, W.G. Freeman, S.R. Hall, M.R. Harrison, D.M. Jacobson, S.J. Zammattio, Superconductivity at 92 K in the (Pb,Cd)-1212 phase (Pb0.5Cd0.5)Sr2(Y0.7Ca0.3)Cu2O7-δ Supercond. Sci. Tech. 5, 47–49 (1992)CrossRefADSGoogle Scholar
  4. 4.
    S.R. Hall, M.T.R. Harrison, The search for new superconductors Chem. Br. 30, 739–742 (1994)Google Scholar
  5. 5.
    X.-D. Xiang, X. Sun, G. Briceno, Y. Lou, K.-A. Wang, H. Chang, W.G. Wallace-Freedman, S.-W. Chen, P.G. Schultz, A combinatorial approach to materials discovery Science 268, 1738–1740 (1995)PubMedCrossRefADSGoogle Scholar
  6. 6.
    B. Wessler, V. Jehanno, W. Rossner, W.F. Maier, Combinatorial synthesis of thin film libraries for microwave dielectrics Appl. Surf. Sci. 223, 30–34 (2004)CrossRefADSGoogle Scholar
  7. 7.
    R. Wendelbo, D.E. Akporiakye, A. Karlsson, M. Plassen, A. Olafsen, Combinatorial hydrothermal synthesis and characterisation of perovskites J. Euro Ceramic Soc. 26, 849–859 (2006)CrossRefGoogle Scholar
  8. 8.
    T. Chikyow, P. Ahmet, K. Nakajima, T. Koida, M. Takakura, M. Yoshimoto, H. Koinuma, A combinatorial approach in oxide/semiconductor interface research for future electronic devices Appl. Surf. Sci. 189, 284–291 (2002)CrossRefADSGoogle Scholar
  9. 9.
    J.R.G. Evans, M.J. Edirisinghe, P.V. Coveney, J. Eames, Combinatorial searches of inorganic materials using the ink-jet printer; science, philosophy and technology J. Eur. Ceram. Soc. 21, 2291–2299 (2001)CrossRefGoogle Scholar
  10. 10.
    R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, N.McN. Alford, Manufacture and measurement of combinatorial libraries of dielectric ceramics, part I: Physical characterisation of Ba1-xSrxTiO3 libraries J. Eur. Ceram. Soc. 27, 3861–3865 (2007)CrossRefGoogle Scholar
  11. 11.
    R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, P. Kr. Petrov, A.N. Salak, D.A. Kiselev, A.L. Kholkin, V.M. Ferreira, N. McN. Alford, Manufacture and measurement of combinatorial libraries of dielectric ceramics, part II: Dielectric measurements of Ba1-xSrxTiO3 Libraries. J. Eur. Ceram. Soc. 27(16), 4437–4443 (2007), DOI  10.1016/j.jeurceramsoc.2007.04.008
  12. 12.
    R.C. DeVries, R. Roy, Phase equilibria in the system BaTiO3–CaTiO3 J. Am. Ceram. Soc. 38, 142–146 (1955)CrossRefGoogle Scholar
  13. 13.
    X. Wang, H. Yamada, C.-N. Xu, Large electrostriction near the solubility limit in BaTiO3–CaTiO3 ceramics Appl. Phys. Lett. 86, 022905 (2005)CrossRefADSGoogle Scholar
  14. 14.
    H. Veenhuis, T. Borger, K. Peithmann, M. Flaspohler, K. Buse, R. Pankrath, H. Hesse, E. Kratzig, Light-induced charge-transport properties of photorefractive barium–calcium–titanate crystals doped with rhodium Appl. Phys. B Lasers Opt. 70, 797–801 (2000)ADSGoogle Scholar
  15. 15.
    S. Jayanthi, T.R.N. Kutty, Extended phase homogeneity and electrical properties of barium calcium titanate prepared by the wet chemical methods Mat. Sci. Eng. B 110, 202–212 (2004)CrossRefGoogle Scholar
  16. 16.
    R. Varatharajan, S.B. Samanta, R. Jayavel, C. Subramanian, A.V. Narlikar, P. Ramasamy, Ferroelectric characterisation studies on barium calcium titanate single crystals Mat. Charac. 45, 89–93 (2000)CrossRefGoogle Scholar
  17. 17.
    J. Wang, J.R.G. Evans, Library preparation using an aspirating–dispensing ink-jet printer for combinatorial studies in ceramics J. Mater. Res. 20, 2733–2740 (2005)CrossRefADSGoogle Scholar
  18. 18.
    J. Wang, J.R.G. Evans, London University Search Instrument: A combinatorial robot for high throughput methods in ceramic science J. Com. Chem. 7, 665–672 (2005)CrossRefGoogle Scholar
  19. 19.
    P.K. Petrov, N.McN. Alford, S. Gevorgyan, Techniques for microwave measurements of ferroelectric thin films and their associated error and limitations Meas. Sci. Technol. 16, 583–589 (2005)CrossRefADSGoogle Scholar
  20. 20.
    A.N. Salak, V.V. Shvartsman, M.P. Seabra, A.L. Kholkin, V.M. Ferreira, Ferroelectric-to-relaxor transition behaviour of BaTiO3 ceramics doped with La(Mg1/2Ti1/2)O3 J. Phys. Condens. Matter 16, 2785–2794 (2004)CrossRefADSGoogle Scholar
  21. 21.
    J. Wang, J.R.G. Evans, Segregation in multi-component ceramic colloids during drying of droplets. Phys. Rev. E 73, Art. No. 021501 (2006)Google Scholar
  22. 22.
    Z.Q. Zhuang, M.P. Harmer, D.M. Smyth, R.E. Newnham, The effect of octahedrally-coordinated calcium on the ferroelectric transition of BaTiO3 Mater. Res. Bull. 22, 1329–1335 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Robert C. Pullar
    • 1
    Email author
  • Yong Zhang
    • 2
  • Lifeng Chen
    • 2
  • Shoufeng Yang
    • 2
  • Julian R. G. Evans
    • 2
  • Andrei N. Salak
    • 3
  • Dmitry A. Kiselev
    • 3
  • Andrei L. Kholkin
    • 3
  • Victor M. Ferreira
    • 4
  • Neil McN. Alford
    • 1
  1. 1.Centre for Physical Electronics and Materials (PEM), Department of MaterialsImperial College LondonLondonUK
  2. 2.Department of MaterialsQueen Mary, University of LondonLondonUK
  3. 3.Department of Ceramics and Glass Engineering/CICECOUniversity of AveiroAveiroPortugal
  4. 4.Department of Civil Engineering/CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations