Journal of Electroceramics

, Volume 22, Issue 4, pp 383–389

Chemical solution deposition of ferroelectric lead lanthanum zirconate titanate films on base-metal foils

  • Beihai Ma
  • Do-Kyun Kwon
  • Manoj Narayanan
  • U. (Balu) Balachandran
Article

Abstract

Development of electronic devices with better performance and smaller size requires the passive components to be embedded within a printed wire board (PWB). The “film-on-foil” approach is the most viable method for embedding these components within a PWB. We have deposited high-permittivity ferroelectric lead lanthanum zirconate titanate (Pb0.92La0.08Zr0.52Ti0.48Ox, PLZT 8/52/48) films on base metal foils by chemical solution deposition. These prefabricated capacitor sheets can be embedded into PWBs for power electronic applications. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was applied by chemical solution deposition on nickel foil before the deposition of PLZT. With a ≈0.7-μm-thick ferroelectric PLZT film grown on LNO-buffered nickel foil, we measured capacitance densities of 1.5 μF/cm2, breakdown field strength Eb >1.2 MV/cm, and leakage current density of 2 × 10–8A/cm2. The dielectric relaxation current decay obeys the Curie-von Schweidler law, with exponent n = 0.85 and 0.94 for PLZT grown directly on Ni and that grown on LNO-buffered Ni foils, respectively. When compared with samples deposited directly on Ni substrate, PLZT grown on LNO buffered Ni substrates exhibit slimmer hysteresis loop and better energy storage capability. With these desirable characters, PLZT film-on-foil capacitors hold particular promise for use in high-voltage embedded passives.

Keywords

Ferroelectric film PLZT Ceramic capacitor Dielectric property Chemical solution deposition 

References

  1. 1.
    W. Borland, M. Doyle, L. Dellis, O. Renovales, D. Majumdar, Mater. Res. Soc. Symp. Proc. 833, 143 (2005)Google Scholar
  2. 2.
    D. Nelms, R. Ulrich, L. Schaper, S. Reeder, Proceedings of the 48th IEEE Electronic Components and Technology Conference, pp. 247–251, Institute of Electrical and Electronic Engineers, Piscataway, NJ (1998).Google Scholar
  3. 3.
    W. Zhang, K. Sasaki, T. Hata, Jpn. J. Appl. Phys., Part 1. 35, 5084 (1996)CrossRefGoogle Scholar
  4. 4.
    Y. Zhu, J. Zhu, Y.J. Song, S.B. Desu, Appl. Phys. Lett. 73, 1958 (1998)CrossRefADSGoogle Scholar
  5. 5.
    J.T. Dawley, P.G. Clem, Appl. Phys. Lett. 81, 3028 (2002)CrossRefADSGoogle Scholar
  6. 6.
    J. Ihlefeld, B. Laughlin, A. Hunt-Lowery, W. Borland, A. Kingon, J.P. Maria, J. Electroceramics. 14, 95 (2005)CrossRefGoogle Scholar
  7. 7.
    T. Kim, J.N. Hanson, A. Gruverman, A.I. Kingon, S.K. Streiffer, Appl. Phys. Lett. 88, 262907 (2006)CrossRefADSGoogle Scholar
  8. 8.
    M.D. Losego, L.H. Jimison, J.F. Ihlefeld, J-P. Maria, Appl. Phys. Lett. 86, 172906 (2005)CrossRefADSGoogle Scholar
  9. 9.
    A.I. Kingon, S. Srinivasan, Nature Materials. 4, 233 (2005)CrossRefADSGoogle Scholar
  10. 10.
    S.Y. Kim, D.J. Kim, J.G. Hong, S.K. Streiffer, A.I. Kingon, J. Mater. Res. 14, 1371 (1999)CrossRefADSGoogle Scholar
  11. 11.
    Q. Zou, H.E. Ruda, B.G. Yacobi, Appl. Phys. Lett. 78, 1282 (2001)CrossRefADSGoogle Scholar
  12. 12.
    D.Y. Kaufman, S. Sabha, K. Uprety, Proceedings of the 12th US-Japan Seminar on Dielectric and Piezoelectric Ceramics, pp. 305–308, Annapolis, MD (November 2005)Google Scholar
  13. 13.
    Y. Xu, Ferroelectroc Materials and Their Applications (Elsevier Science Publishing Company, New York, 1993), pp. 164–168Google Scholar
  14. 14.
    H.M. O’Bryan Jr., J. Am. Ceram. Soc. 56, 385 (1973)CrossRefGoogle Scholar
  15. 15.
    D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, J. Phys. D. Appl. Phys. 36, 1217 (2003)CrossRefADSGoogle Scholar
  16. 16.
    P. Curie, Ann. Chim. Phys. 18, 203 (1889)Google Scholar
  17. 17.
    E. von Schweidler, Ann. Phys. 24, 711 (1907)CrossRefGoogle Scholar
  18. 18.
    K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)Google Scholar
  19. 19.
    M.V. Raymond, J. Chen, D.M. Smith, Integ. Ferroelectrics. 5, 73 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Beihai Ma
    • 1
  • Do-Kyun Kwon
    • 1
  • Manoj Narayanan
    • 1
  • U. (Balu) Balachandran
    • 1
  1. 1.Energy Systems DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations