Journal of Electroceramics

, Volume 22, Issue 1–3, pp 276–280 | Cite as

Ferroelectric properties of SrBi2Ta2O9 thin films on Si (100) with a LaZrOx buffer layer

  • Jong-Hyun Im
  • Ho-Seung Jeon
  • Joo-Nam Kim
  • Dong-Won Kim
  • Byung-Eun Park
  • Chul-Ju Kim


To obtain a metal–ferroelectric–insulator–semiconductor (MFIS) structure, we fabricated ferroelectric SrBi2Ta2O9 (SBT) film on a p-type Si (100) wafer with a LaZrOx (LZO) buffer layer by means of a sol–gel technique. The sol–gel deposited LZO film according to the different annealing temperatures had a good surface morphology even though the crystalline phase was not an amorphous phase. In particular, the root-mean-squared (RMS) surface roughness of the 750-°C-annealed LZO film was about 0.365 nm and its leakage current density was about 8.2 × 10−7 A/cm2 at 10 V. A Au/SBT/LZO/Si structure with different SBT film was fabricated. The CV characteristics of the Au/SBT/LZO/Si structure showed a clockwise hysteresis loop. The memory window width increased as the SBT film thickness increased. The 600-nm-thick SBT film was crystallized in a polycrystalline phase with a highly preferred (115) orientation. The memory window width of the 600-nm-thick SBT film was about 1.94 V at the bias sweep voltage ±9 V and the leakage current density was about 6.48 × 10−8 A/cm2 at 10 V.


MFIS SrBi2Ta2O9 LaZrOx Sol–gel 


  1. 1.
    J.F. Scott, C.A. Paz de Araujo, Science 246, 14004 (1989)CrossRefGoogle Scholar
  2. 2.
    K. Takahashi, K. Aizawa, H. Ishiwara, Jpn. J. Appl. Phys 45, 5098 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, Y. Tarui, Jpn. J. Appl. Phys 33, 5172 (1994)CrossRefADSGoogle Scholar
  4. 4.
    B.-E. Park, K. Takahashi, H. Ishiwara, J. Kor. Phys. Soc 46, 346 (2005)Google Scholar
  5. 5.
    Y.-U. Song, J.-S. Park, J.-W. Yoon, G.-G. Lee, B.-E. Park, C.-J. Kim, Y.-S. Choi, J.-H. Koh, Int. Ferroeletr 84, 203 (2006)CrossRefGoogle Scholar
  6. 6.
    B.-E. Park, K. Takahashi, H. Ishiwara, Appl. Phys. Lett 85, 4448 (2004)CrossRefADSGoogle Scholar
  7. 7.
    B.-E. Park, H. Ishiwara, J. Kor. Phys. Soc 42, S1149 (2003)Google Scholar
  8. 8.
    M. Takahashi, S. Sakai, Jpn. J. Appl. Phys 44, L800 (2005)CrossRefADSGoogle Scholar
  9. 9.
    H. Okuyucu, E. Celik, M.K. Ramazanoglu, T. Akin, I.H. Mutlu, W. Sigmund, J.E. Crow, Y.S. Hascicek, IEEE Trans. Appl. Supercond 11, 2889 (2001)CrossRefGoogle Scholar
  10. 10.
    J.W. Seo, J. Fompeyrine, A. Guiller, G. Norga, C. Marchiori, H. Siegwart, J.-P. Locquet, Appl. Phys. Lett 83, 5211 (2003)CrossRefADSGoogle Scholar
  11. 11.
    S. Tirumala, A.C. Rastogi, S.B. Desu, J. Electroceram. 5, 7 (2000)CrossRefGoogle Scholar
  12. 12.
    W.L. Chang, J.L. He, J. Electrocerm. 13, 35 (2005)CrossRefGoogle Scholar
  13. 13.
    W. Jo, Appl. Phys. A: Mater. Sci. Process 72, 81 (2004)CrossRefADSGoogle Scholar
  14. 14.
    A.Z. Simões, A.H.M. Gonzalez, C.S. Riccardi, E.C. Souza, F. Moura, M.A. Zaghete, E. Longo, J.A. Verela, J. Electroceram. 13, 65 (2004)CrossRefGoogle Scholar
  15. 15.
    E.F. Dudnik, V.M. Duda, A.I. Kushnerov, Phys. Solid State 43, 2280 (2001)CrossRefADSGoogle Scholar
  16. 16.
    H.S. Choi, E.H. Kim, I.H. Choi, Y.T. Kim, J.H. Choi, J.Y. Lee, Thin Solid Films 388, 226 (2001)CrossRefADSGoogle Scholar
  17. 17.
    H. Kido, S. Komarneni, R. Roy, J. Am. Ceram. Soc 74, 422 (1991)CrossRefGoogle Scholar
  18. 18.
    H. Hu, C. Zhu, Y.F. Lu, Y.H. Wu, T. Liew, M.F. Li, B.J. Cho, W.K. Choi, N. Yakovlev, J. Appl. Phys. 94, 551 (2003)CrossRefADSGoogle Scholar
  19. 19.
    M. Nagata, D.P. Vijay, X. Zhang, S.B. Desu, Phys. Stat. Sol 157, 75(1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jong-Hyun Im
    • 1
  • Ho-Seung Jeon
    • 1
  • Joo-Nam Kim
    • 1
  • Dong-Won Kim
    • 1
  • Byung-Eun Park
    • 1
  • Chul-Ju Kim
    • 1
  1. 1.School of Electrical and Computer EngineeringUniversity of SeoulSeoulSouth Korea

Personalised recommendations