Advertisement

Journal of Electroceramics

, Volume 21, Issue 1–4, pp 724–728 | Cite as

Study of piezoelectric fibre/cement 1–3 composites

  • K. H. LamEmail author
  • H. L. W. Chan
Article

Abstract

To improve the compatibility between the sensor material and civil engineering structural material, a new functional cement-based composite for smart structure applications has been studied. Piezoelectric lead zirconate titanate (PZT) fibres, fabricated using a slurry method, are embedded in a cement matrix to form PZT/cement 1–3 composites. By incorporating PZT fibres into the cement matrix, composites with low PZT volume fractions ranging from 0.05 to 0.22 have been fabricated. The 1–3 composites have good piezoelectric properties that agree quite well with theoretical modeling. The thickness electromechanical coupling coefficient of the composites could reach ∼0.5 even for low volume fraction of PZT. These composites have potential to be used as sensors in civil structure health monitoring systems.

Keywords

PZT Cement 1–3 Composites 

Notes

Acknowledgements

This work was supported by the Hong Kong Research Grants Council and by the Centre for Smart Materials of the Hong Kong Polytechnic University.

References

  1. 1.
    B. Culshaw, Smart structures and materials, (Artech House, Boston London, 1995).Google Scholar
  2. 2.
    S. Aizawa, T. Kakizawa, M. Higasino, Smart Mater. Struc. 7, 617 (1998)CrossRefADSGoogle Scholar
  3. 3.
    C.K. Soh, K.K-H Tseng, S. Bhalla, A. Gupta, Smart Mater. Struc. 9, 533 (2000)CrossRefADSGoogle Scholar
  4. 4.
    J. Kim, B. Ko, Smart Mater. Struc. 7, 801 (1998)CrossRefADSGoogle Scholar
  5. 5.
    P. Janker, M. Christmann, F. Hermle, T. Lorkowski, S. Storm, J. Eur. Ceram. Soc. 19, 1127 (1999)CrossRefGoogle Scholar
  6. 6.
    R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)CrossRefGoogle Scholar
  7. 7.
    J.A. Hossack, G. Hayward, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 618 (1991)PubMedCrossRefGoogle Scholar
  8. 8.
    R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)CrossRefGoogle Scholar
  9. 9.
    H.L.W. Chan, J. Unsworth, J. Appl. Phys. 65, 1754 (1989)CrossRefADSGoogle Scholar
  10. 10.
    W.A. Smith, B.A. Auld, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 40 (1991)PubMedCrossRefGoogle Scholar
  11. 11.
    K.H. Lam, H.L.W. Chan, Appl. Phys., A Mater. Sci. Process. online published (2005)Google Scholar
  12. 12.
    K.H. Lam, H.L.W. Chan, C.L. Choy, H.S. Luo, Q.R. Yin, Z.W. Yin, Ceram. Int. 30, 1939 (2004)CrossRefGoogle Scholar
  13. 13.
    IEEE standard on piezoelectricity, ANSI/IEEE Std., 176 (1987)Google Scholar
  14. 14.
    B.E. Read, G.D. Dean, The determination of dynamic properties of polymers and composite, (Adam Hilger, London, 1978)Google Scholar
  15. 15.
    A.M. Neville, Properties of concrete (Wiley, New York, 1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Applied Physics and Materials Research CentreThe Hong Kong Polytechnic UniversityHunghom, Hong KongChina

Personalised recommendations