Advertisement

Journal of Electroceramics

, Volume 20, Issue 3–4, pp 159–165 | Cite as

Constitutive modelling of rate-dependent domain switching effects in ferroelectric and ferroelastic materials

  • A. Arockiarajan
  • A. Menzel
  • W. Seemann
Article
  • 88 Downloads

Abstract

In this contribution, a micro-mechanically motivated constitutive model for rate-dependent domain switching effects is studied. The main focus consists in the development of a three-dimensional finite element framework capturing phase-transformations, whereby for the sake of simplicity each finite element will represent one individual grain. For the investigation of phase-transitions, the onset of so-called domain switching processes is initiated by means of an energy-based criterion. During such switching processes, nucleation and propagation of domain wall motion is incorporated via a straightforward volume fraction concept combined with a simple linear kinetics theory. Moreover, grain boundary effects are accounted for, whereby a macro-mechanically motivated probabilistic approach has been chosen. Based on the proposed formulation, representative simulations are elaborated which provide further insight into the highly nonlinear behaviour of ferroelectric and ferroelastic materials.

Keywords

Ferroelectricity Ferroelasticity Rate-dependency Volume fraction concept Finite element method Grain boundary effects 

References

  1. 1.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, New York, 1971)Google Scholar
  2. 2.
    C.S. Lynch, R.M. McMeeking, Ferroelectrics 160, 177 (1994)CrossRefGoogle Scholar
  3. 3.
    M. Kamlah, C. Tsakmakis, Int. J. Solids Struct. 36, 669 (1999)CrossRefGoogle Scholar
  4. 4.
    C.M. Landis, J. Mech. Phys. Solids 50, 127 (2002)CrossRefGoogle Scholar
  5. 5.
    J. Schröder, D. Gross, Arch. Appl. Mech. 73, 533 (2004)CrossRefGoogle Scholar
  6. 6.
    W. Lu, D.-N. Fang, C.Q. Li, K.C. Hwang, Acta Mater. 47, 2913 (1999)CrossRefGoogle Scholar
  7. 7.
    X. Chen, D.N. Fang, K.C. Hwang, Acta Mater. 45, 3189 (1997)Google Scholar
  8. 8.
    S.C. Hwang, C.S. Lynch, R.M. McMeeking, Acta Metall. Mater. 5, 2073 (1995)Google Scholar
  9. 9.
    H. Allik, T.J.R. Hughes, Int. J. Numer. Methods Eng. 2, 151 (1970)CrossRefGoogle Scholar
  10. 10.
    P. Gaudenzi, K.J. Bathe, J. Intell. Mater. Syst. Struct. 6, 266 (1995)CrossRefGoogle Scholar
  11. 11.
    S.C. Hwang, R. Waser, Acta Mater. 48, 3271 (2000)CrossRefGoogle Scholar
  12. 12.
    A. Arockiarajan, A. Menzel, B. Delibas, W. Seemann, J. Intell. Mater. Syst. Struct. (2006) (in press)Google Scholar
  13. 13.
    A. Arockiarajan, B. Delibas, A. Menzel, W. Seemann, Comput. Mater. Sci. 37, 306 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Arockiarajan, A. Menzel, B. Delibas, W. Seemann, Eur. J. Mech. A, Solids 25, 950 (2006)CrossRefGoogle Scholar
  15. 15.
    B. Delibas, A. Arockiarajan, W. Seemann, Int. J. Solids Struct. 43, 697 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Arockiarajan, A. Menzel, Comput. Model. Eng. Sci. 626, 1 (2008)Google Scholar
  17. 17.
    W.J. Merz, Phys. Rev. 95, 690 (1954)CrossRefGoogle Scholar
  18. 18.
    C.M. Landis, Curr. Opin. Solid State Mater. Sci. 8, 59 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Applied MechanicsIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Mechanical EngineeringInstitute of Mechanics and Control Engineering, Chair of Continuum Mechanics, University of SiegenSiegenGermany
  3. 3.Department of Mechanical EngineeringInstitute for Engineering Mechanics, University of KarlsruheKarlsruheGermany

Personalised recommendations