Journal of Electroceramics

, Volume 18, Issue 3–4, pp 261–268 | Cite as

Effect of Cr additions on the microstructural stability of Ni electrodes in ultra-thin BaTiO3 multilayer capacitors

  • Anton V. PolotaiEmail author
  • Tae-Hee Jeong
  • Gai-Ying Yang
  • Elizabeth C. Dickey
  • Clive A. Randall
  • Pascal Pinceloup
  • Abhijit S. Gurav


Microstructural control in thin-layer multilayer ceramic capacitors (MLCC) is one of the present day challenges to maintain an increase in capacitive volumetric efficiency. This present paper opens a series of investigations aimed to engineer the stability of ultra-thin Ni electrodes in BaTiO3-based multilayer capacitors using refractory metal additions to Ni. Here, pure Ni and Ni–1 wt.% Cr alloy powders are used to produce 0805-type BME MLCCs with 300 active layers and with dielectric and electrode layer thickness around 1 μm. To investigate the continuity of Ni electrodes, both MLCC chips with pure and doped electrodes were sintered at different temperatures for 5 h. It is found that the continuity of Ni electrodes is improved most likely due to the effect of Cr on the low-melting point (Ni,Ba,Ti) interfacial alloy layer formation. The interfacial alloy layer is not observed when Cr is segregated at Ni-BaTiO3 interface in the Cr-doped samples, while it is found in all undoped samples. The interfacial alloy layer is believed to increase mass-transfer along the Ni-BaTiO3 interfaces facilitating an acceleration of Ni electrodes discontinuities.


MLCC Nickel electrodes BaTiO3 Ni-BaTiO3 interfaces 



The authors acknowledge members of the NSF Industry/University Cooperative Research Centers Program Center for Dielectric Studies and the Materials Characterization Laboratory at Pennsylvania State University. This work was supported by the National Science Foundation, as part of the Center for Dielectric Studies under Grant No. 0120812.


  1. 1.
    C.A. Randall, J. Ceram. Soc. Jpn. 109, S2 (2001)Google Scholar
  2. 2.
    H. Nagata, S.W. Ko, E. Hong, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 89, 2816 (2006)Google Scholar
  3. 3.
    H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. Part 1 42, 1 (2003)CrossRefGoogle Scholar
  4. 4.
    D. Josell, W.C. Carter, J.E. Bonevich, Nanostruct. Mater. 12, 387 (1999)CrossRefGoogle Scholar
  5. 5.
    N. Junqua, J. Grilhe, Philos. Mag., A, Phys. Condens. Matter, Struct. Defects Mech. Prop. 71, 1125 (1995)Google Scholar
  6. 6.
    L. Klinger, Defect and Diffusion Forum 216, 197 (2003)Google Scholar
  7. 7.
    A.C. Lewis, D. Josell, T.P. Weihs, Scr. Mater. 48, 1079 (2003)CrossRefGoogle Scholar
  8. 8.
    A.C. Lewis, A.B. Mann, D.V. Heerden, D. Josell, T.P. Weihs, Mater. Res. Soc. Symp. 652, Y.1.3.1 (2001)Google Scholar
  9. 9.
    K.T. Miller, F.F. Lange, D.B. Marshall, J. Mater. Res. 5, 151 (1990)Google Scholar
  10. 10.
    N. Sridhar, J.M. Rickman, D.J. Srolovitz, J. Appl. Physi. 82, 4852 (1997)CrossRefGoogle Scholar
  11. 11.
    N. Sridhar, J.M. Rickman, D.J. Srolovitz, Acta Mater. 45, 2715 (1997)CrossRefGoogle Scholar
  12. 12.
    H.L. Knoedler, G.E. Lucas, Metall. Mater. Trans. A. 34A, 1043 (2002)Google Scholar
  13. 13.
    A. Misra, R.G. Hoagland, H. Kung, Philos. Mag. 84, 1021 (2004)CrossRefGoogle Scholar
  14. 14.
    D.P. Cann, C.A. Randall, J. Appl. Physi. 80, 1628 (1996)CrossRefGoogle Scholar
  15. 15.
    D.P. Cann, C.A. Randall, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 1405 (1997)CrossRefGoogle Scholar
  16. 16.
    G.Y. Yang, E.C. Dickey, C.A. Randall, D.E. Barber, P. Pinceloup, M.A. Henderson, R.A. Hill, J.J. Beeson, D.J. Skamser, J. Appl. Physi. 96, 7492 (2004)CrossRefGoogle Scholar
  17. 17.
    G.Y. Yang, S.I. Lee, Z.J. Liu, C.J. Anthony, E.C. Dickey, Z.K. Liu, C.A. Randall, Acta Mater. 54, 3513 (2006)CrossRefGoogle Scholar
  18. 18.
    G.Y. Yang, G.D. Lian, E.C. Dickey, C.A. Randall, D.E. Barber, P. Pinceloup, M.A. Henderson, R.A. Hill, J.J. Beeson, D.J. Skamser, J. Appl. Physi. 96, 7500 (2004)CrossRefGoogle Scholar
  19. 19.
    G.Y. Yang, E.C. Dickey, C.A. Randall, M.S. Randall, L.A. Mann, J. Appl. Physi. 94, 5990 (2003)CrossRefGoogle Scholar
  20. 20.
    H. Hero, E. Sorbroden, J. Gjonnes, J. Mater. Sci. 22, 2542 (1987)CrossRefGoogle Scholar
  21. 21.
    F.G. Hodge, R.W. Kirchner, Corrosion 32, 332 (1976)Google Scholar
  22. 22.
    E. Schippel, Thin Solid Films, 146, 133 (1987)CrossRefGoogle Scholar
  23. 23.
    P. Kritsalis, L. Coudurier, N. Eustathopoulos, J. Mater. Sci. 26, 3400 (1991)CrossRefGoogle Scholar
  24. 24.
    P. Kritsalis, V. Merlin, L. Coudurier, N. Eustathopoulos, Acta Metall. 40, 1167 (1992)CrossRefGoogle Scholar
  25. 25.
    D.P. Cann, J.P. Maria, C.A. Randall, J. Mater. Sci. 36, 4969 (2001)CrossRefGoogle Scholar
  26. 26.
    L.E. Murr, Interfacial Phenomena in Metals and Alloys. (Addison Wesley Publishing Company, New York, 1975)Google Scholar
  27. 27.
    A.V. Polotai, K.M. Breece, E.C. Dickey, C.A. Randall, A.V. Ragulya, J. Am. Ceram. Soc. 88, 3008 (2005)CrossRefGoogle Scholar
  28. 28.
    H.W. Jaffe, Crystal Chemistry and Refractivity. (Dover Publications Inc, Mineola, 1996)Google Scholar
  29. 29.
    C.H.P. Lupis, Chemical Thermodynamics of Materials. (Elsiver Science Publishing Co. Inc., New York, 1983)Google Scholar
  30. 30.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anton V. Polotai
    • 1
    Email author
  • Tae-Hee Jeong
    • 1
  • Gai-Ying Yang
    • 1
  • Elizabeth C. Dickey
    • 1
  • Clive A. Randall
    • 1
  • Pascal Pinceloup
    • 2
  • Abhijit S. Gurav
    • 2
  1. 1.Center for Dielectric Studies, Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.KEMET Electronics CorporationFountain InnUSA

Personalised recommendations