Advertisement

Journal of Electroceramics

, Volume 19, Issue 1, pp 113–126 | Cite as

Lead-free piezoelectric ceramics: Alternatives for PZT?

  • Thomas R. ShroutEmail author
  • Shujun J. Zhang
Article

Abstract

Investigations in the development of lead-free piezoelectric ceramics have recently claimed comparable properties to the lead-based ferroelectric perovskites, represented by Pb(Zr,Ti)O3, or PZT. In this work, the scientific and technical impact of these materials is contrasted with the various families of “soft” and “hard” PZTs. On the scientific front, the intrinsic nature of the dielectric and piezoelectric properties are presented in relation to their respective Curie temperatures (T C) and the existence of a morphotropic phase boundary (MPB). Analogous to PZT, enhanced properties are noted for MPB compositions in the (Na,Bi)TiO3-BaTiO3 and ternary system with (K,Bi)TiO3, but offer properties significantly lower. The consequences of a ferroelectric to antiferroelectric transition well below T C further limits their usefulness. Though comparable with respect to T C, the high levels of piezoelectricity reported in the (K,Na)NbO3 family are the result of enhanced polarizability associated with the orthorhombic-tetragonal polymorphic phase transition being compositionally shifted downward. As expected, the properties are strongly temperature dependent, while degradation occurs through the thermal cycling between the two distinct ferroelectric domain states. Extrinsic contributions arising from domains and domain wall mobility were determined using high field strain and polarization measurements. The concept of “soft” and “hard” lead-free piezoelectrics were discussed in relation to donor and acceptor modified PZTs, respectively. Technologically, the lead-free materials are discussed in relation to general applications, including sensors, actuators and ultrasound transducers.

Keywords

Piezoelectric Perovskites Lead-free ceramic PZT KNN 

Notes

Acknowledgment

This work supported by Office of Naval Research (ONR) and National Institutes of Health (NIH) under grant number P41-RR11795. The authors also thanks to Prof. Tadashi Takenaka and Dr. Hajime Nagata for the BNBK samples.

References

  1. 1.
    B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, NY, 1971), p. 92Google Scholar
  2. 2.
    D. Berlincourt, in Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics, ed. By O.E. Mattiat (Plenum, London, 1971), Ch.2Google Scholar
  3. 3.
    A.J. Moulson, J.M. Herbert, Electroceramics—Materials, Properties, Applications (Chapman & Hall, London, 1990)Google Scholar
  4. 4.
    J.M. Herbert, Ferroelectric Transducers and Sensors (Gordon and Breach Science, New York, 1982)Google Scholar
  5. 5.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  6. 6.
    E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Saito, H. Takao, Ferroelectrics 338, 17–32 (2006)CrossRefGoogle Scholar
  8. 8.
    R. Wang, R. Xie, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Phys. Status Solidi, A Appl. Res. 202, R57–R59 (2005)CrossRefGoogle Scholar
  9. 9.
    R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, T. Sekiya, M. Itoh, Ferroelectrics 336, 39–46 (2006)CrossRefGoogle Scholar
  10. 10.
    Y. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59, 241–245 (2005)CrossRefGoogle Scholar
  11. 11.
    Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121–4123 (2004)CrossRefGoogle Scholar
  12. 12.
    G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du, L.M. Zheng, S.J. Zhang, T.R. Shrout, Appl. Phys. Lett. 88, 212908 (2006)CrossRefGoogle Scholar
  13. 13.
    S.B. Lang, W. Zhu, L.E. Cross, Ferroelectrics 336, 15–21 (2006)CrossRefGoogle Scholar
  14. 14.
    H. Takao, Y. Saito, Y. Aoki, K. Horibuchi, J. Am. Ceram. Soc. 89, 1951–1956 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Tashiro, K. Ishii, J. Ceram. Soc. Jpn., Int. ed. 114, 386–391 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Saito, H. Takao, in 12th US–Japan Seminar on Dielectric and Piezoelectric Ceramics, ed. By C. Wu, H. Kishi, C. Randall, P. Pinceloup, H. Funakubo, (Maryland, 2005), pp. 103–107Google Scholar
  17. 17.
    M. Matsubara, K. Kikuta, S. Hirano, J. Appl. Phys. 97, 114105 (2005)CrossRefGoogle Scholar
  18. 18.
    M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, J. Am. Ceram. Soc. 88, 1190–1196 (2005)CrossRefGoogle Scholar
  19. 19.
    J. Yoo, J. Hong, H. Lee, Y. Jeong, B. Lee, H. Song, J. Kwon, Sens. Actuators, A, Phys. 126, 41–47 (2006)CrossRefGoogle Scholar
  20. 20.
    S.H. Choy, X.X. Wang, H.L.W. Chan, C.L. Choy, Appl. Phys. A 82, 715–720 (2006)CrossRefGoogle Scholar
  21. 21.
    Y. Yuan, S. Zhang, X. Zhou, J. Liu, Jpn. J. Appl. Phys. 45, 831–834 (2006)CrossRefGoogle Scholar
  22. 22.
    D. Lin, D. Xiao, J. Zhu, P. Yu, Appl. Phys. Lett. 88, 062901 (2006)CrossRefGoogle Scholar
  23. 23.
    X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91 (2004)CrossRefGoogle Scholar
  24. 24.
    Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 43, 7556–7559 (2004)CrossRefGoogle Scholar
  25. 25.
    T. Takenaka, H. Nagata, Key Eng. Mater. 157–158, 57–64 (1999)Google Scholar
  26. 26.
    T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693–2700 (2005)CrossRefGoogle Scholar
  27. 27.
    S.H. Choy, X.X. Wang, H.L.W. Chan, C.L. Choy, Ferroelectrics 336, 69–79 (2006)CrossRefGoogle Scholar
  28. 28.
    J.S. Song, S.J. Jeong, I.S. Kim, D.S. Lee, E.C. Park, Ferroelectrics 338, 3–8 (2006)CrossRefGoogle Scholar
  29. 29.
    J.T. Zeng, K.W. Kwok, H.L.W. Chan, J. Am. Ceram. Soc. 89, 2828–2832 (2006)Google Scholar
  30. 30.
    X. Wang, H.L.W. Chan, C.L. Choy, Solid State Commun. 125, 395–399 (2003)CrossRefGoogle Scholar
  31. 31.
    S. Zhao, G. Li, A. Ding, T. Wang, Q. Yin, J. Phys. D: Appl. Phys. 39 2277–2281 (2006)CrossRefGoogle Scholar
  32. 32.
    T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236–2239 (1991)CrossRefGoogle Scholar
  33. 33.
    H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Jpn. J. Appl. Phys. 42, 7401–7403 (2003)CrossRefGoogle Scholar
  34. 34.
    Y. Hiruma, Y. Makiuchi, R. Aoyagi, H. Nagata, T. Takenaka, Ceram. Trans. 174, 139–146 (2006)Google Scholar
  35. 35.
    L. Wu, D. Xiao, D. Lin, J. Zhu, P. Yu, Jpn. J. Appl. Phys. 44, 8515–8518 (2005)CrossRefGoogle Scholar
  36. 36.
    D. Lin, D. Xia, J. Zhu, P. Yu, Phys. Status Solidi, A Appl. Res. 202, R89–91 (2005)CrossRefGoogle Scholar
  37. 37.
    R. Wang, N. Tachibana, N. Miura, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Ferroelectrics 331, 135–139 (2006)CrossRefGoogle Scholar
  38. 38.
    M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceramics 13, 385–392 (2004)CrossRefGoogle Scholar
  39. 39.
    W. Chen, Y. Li, Q. Xu, J. Zhou, J. Electroceramics 15, 229–235 (2005)CrossRefGoogle Scholar
  40. 40.
    D. Berlincourt, in Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics, ed. By O.E. Mattiat (Plenum, London, 1971), Ch.2Google Scholar
  41. 41.
    H. Jaffe, J. Am. Ceram. Soc. 41, 494 (1958)CrossRefGoogle Scholar
  42. 42.
    D. Schofield, R.F. Brown, Can. J. Phys. 35, 594–607 (1957)Google Scholar
  43. 43.
    S.J. Zhang, R. Xia, T.R. Shrout, UnpublishedGoogle Scholar
  44. 44.
    Y. Doshida, H. Kishi, Y. Hattori, A. Makiya, S. Tanaka, K. Uematsu, T. Kimura, in 12th US–Japan Seminar on Dielectric and Piezoelectric Ceramics, ed. By C. Wu, H. Kishi, C. Randall, P. Pinceloup, H. Funakubo (Maryland, 2005), pp. 123–127Google Scholar
  45. 45.
    R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209–213 (1962)CrossRefGoogle Scholar
  46. 46.
    G.H. Haertling, J. Am. Ceram. Soc. 50, 329–330 (1967)CrossRefGoogle Scholar
  47. 47.
    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438–442 (1959)CrossRefGoogle Scholar
  48. 48.
    H. Du, Z. Li, F. Tang, S. Qu, Z. Pei, W. Zhou, Mater. Sci. Eng., B, Solid-state Mater. Adv. Technol. 131, 83–87 (2006)Google Scholar
  49. 49.
    J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J. Am. Ceram. Soc. 89, 706–709, (2006)CrossRefGoogle Scholar
  50. 50.
    B.P. Zhang, J.F. Li, K. Wang, H. Zhang, J. Am. Ceram. Soc. 89, 1605–1609 (2006)CrossRefGoogle Scholar
  51. 51.
    G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619–1625, (1985)CrossRefGoogle Scholar
  52. 52.
    R. Zuo, J. Rodel, R. Chen, L. Li, J. Am. Ceram. Soc. 89, 2010–2015 (2006)CrossRefGoogle Scholar
  53. 53.
    S.Y. Chu, W. Water, Y.D. Juang, J.T. Liaw, Ferroelectrics 287, 23–33, (2003)CrossRefGoogle Scholar
  54. 54.
    S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Jpn. J. Appl. Phys. 43, L1072–L1074 (2004)CrossRefGoogle Scholar
  55. 55.
    S.J. Zhang, E.F. Alberta, R.E. Eitel, C.A. Randall, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2131–2139 (2005)CrossRefGoogle Scholar
  56. 56.
    IEEE Standards on Piezoelecricity, ANSI/IEE Standard 176, 1987Google Scholar
  57. 57.
    G. Shirano, H. Danner, A. Pavlovie, R. Pepinsky, Phys. Rev. 93, 672–673 (1954)CrossRefGoogle Scholar
  58. 58.
    D. Berlincourt, IRE Trans. Ultrason. Eng. PGUE-4, 53–65 (1956)Google Scholar
  59. 59.
    S.J. Zhang, T.R. Shrout, H. Nagata, Y. Hiruma, T. Takenaka, IEEE Trans. Ultrason. Ferroelectr. Freq. Control (in press)Google Scholar
  60. 60.
    B. Lewis, L.A. Thomas, Proc. Internat. Conf. Solid State Phys., Electronics Telecommnus. Brussels 4(Pt. 2), 883–890, (1960)Google Scholar
  61. 61.
    S. Triebwasser, Phys. Rev. 114, 63–70 (1959)CrossRefGoogle Scholar
  62. 62.
    S.J. Zhang, R. Xia, T.R. Shrout, J. Electroceramics. (in press)Google Scholar
  63. 63.
    S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, J. Appl. Phys. 100, 104108 (2006)Google Scholar
  64. 64.
    N. Setter, ABC of piezoelectricity and piezoelectric materials, in Piezoelectric Materials in Devices, ed. By N. Setter (Lausanne, Switzerland, 2002), pp. 1–28Google Scholar
  65. 65.
    R.C. Pohanka, P.L. Smith, in Electronic Ceramics: Properties, Devices, and Applications, ed. By L.M. Levinson (Marcel Dekker, Inc., NY, 1987), Ch. 2Google Scholar
  66. 66.
    K. Carl, K.H. Hardtl, Ferroelectrics 17, 473–486 (1978)Google Scholar
  67. 67.
    Y. Yuan, S. Zhang, X. Zhou, J. Liu, J. Mater. Sci. 41, 565–567 (2006)CrossRefGoogle Scholar
  68. 68.
    Y.J. Son, Y.G. Choi, J.C. Kwon, K.W. Cho, Y.M. Kim, S.Y. Kweon, T.H. Hong, Y.G. Lee, S.L. Ryu, M.S. Yoon, S.C. Ur, Mater. Sci. Forum 510–511, 538–541 (2006)CrossRefGoogle Scholar
  69. 69.
    X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Mater. Lett. 60, 1786–1790 (2006)CrossRefGoogle Scholar
  70. 70.
    S.J. Zhang, J. Luo, R. Xia, P.W. Rehrig, C.A. Randall, T.R. Shrout, Solid State Commun. 137, 16–20 (2006)CrossRefGoogle Scholar
  71. 71.
    K. Lubitz, C. Schuh, T. Steinkopf, A. Wilff, in 7th International Conference on New Actuators, ed. By H. Borgmann (Messe Bremen GmbH, Bremen, 2000), pp. 58–61Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations