Advertisement

Journal of Electroceramics

, Volume 19, Issue 1, pp 149–166 | Cite as

Recent advancements in magnetoelectric particulate and laminate composites

  • Shashank PriyaEmail author
  • Rashed Islam
  • Shuxiang Dong
  • D. Viehland
Article

Abstract

Recently, the magnetoelectric (ME) effect—dielectric polarization of a material under magnetic field, or induced magnetization under an electric field—has become the focus of significant research interests. The primary requirement for the observance of said effect is the coexistence of magnetic and electric dipoles. Most of the known single phase materials suffer from the drawback that the ME effect is quite small, even at low temperatures limiting their applicability in practical devices. Better alternatives are ME composites, which have large magnitudes of the ME voltage coefficient. Composites exploit the product property of materials; where the ME effect is realized by combining magnetostrictive and piezoelectric phases that independently are not ME, but acting together (i.e., their product) result in a ME effect. In this review article, we survey recently reported results concerning ME composites, focusing on ME particulate (synthesized via a controlled precipitation technique) and laminated composites. The article also provides a survey of the compositions and magnitudes of the ME coefficients reported in the literature; a brief description of the analytical models developed to explain and predict the behavior of composites; and discuss several applications that are made possible by enhanced ME effects.

Keywords

Magentoelectric Ferroelectric Magnetostrictive Piezoelectric Sensor Energy harvesting Phase shifter Transformer 

Notes

Acknowledgement

The authors (S. Priya and R. A. Islam) would like to acknowledge the support from DOE and Texas Higher Education Coordinating Board through grant number’s DE-FG02-06ER46288 and 003656-0010-2006 respectively.

References

  1. 1.
    J. Van Suchetelene, Philips Res. Rep. 27, 28–37 (1972)Google Scholar
  2. 2.
    G. Smolenskii, V.A. Ioffe, Colloque International du Magnetisme, Communication No. 71 (1958)Google Scholar
  3. 3.
    D.N. Astrov, B.I. Al’shin, R.V. Zhorin, L.A. Drobyshev, Sov. Phys. JETP 28, 1123 (1968)Google Scholar
  4. 4.
    R.M. Hornreich, Solid State Commun. 7, 1081–1085 (1969)CrossRefGoogle Scholar
  5. 5.
    E. Fischer, G. Gorodetsky, R.M. Hornreich, Solid State Commun. 10, 1127–1132 (1972)CrossRefGoogle Scholar
  6. 6.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55–58 (2003)CrossRefGoogle Scholar
  7. 7.
    T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Feibig, Nature 430, 541–544 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Feibig, T. Lottermoser, D. Fröhlinch, A.V. Goltsev, R.V. Pisarev, Nature 419, 818–820 (2002)CrossRefGoogle Scholar
  9. 9.
    C. Ederer, N.A. Spaldin, Nature Mater 3, 849–851 (2004)CrossRefGoogle Scholar
  10. 10.
    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392–395 (2004)CrossRefGoogle Scholar
  11. 11.
    B.B. Vanaken, T.T.M. Palstra, A. Filippetti, N. Spaldin, Nature Mater 3, 164–170 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Fiebig, J. Phys. D, Appl. Phys. 38, R123–R152 (2005)CrossRefGoogle Scholar
  13. 13.
    H. Schmid, H. Reider, E. Ascher, Solid State Commun. 3, 327 (1965)CrossRefGoogle Scholar
  14. 14.
    S.V. Suryanarayana, Bull. Mater. Sci. 17(7), 1259–1270 (1994)Google Scholar
  15. 15.
    R.S. Singh, Ph. D. Thesis, Osmania University, Hyderabad, India, (1996)Google Scholar
  16. 16.
    R.S. Singh, T. Bhimasankaram, G.S. Kumar, S.V. Suryanarayana, Solid State Commun. 91, 567 (1994)CrossRefGoogle Scholar
  17. 17.
    A. Srinivas, D.-W. Kim, K.S. Hong, S.V. Suryanarayana, Mater. Res. Bull. 39, 55–61 (2004)CrossRefGoogle Scholar
  18. 18.
    B. Ruette, S. Zvyagin, A. Pyatakov, A. Bush, J.F. Li, V. Belotelov, A. Zvezdin, D. Viehland, Phys. Rev., B. 69, 064114 (2004)CrossRefGoogle Scholar
  19. 19.
    A.M. Kadomtseva, A.K. Zvezdin, Y. Popov, A. Pyatakov, G. Vorob’ev, JETP Lett. 79, 571 (2004)CrossRefGoogle Scholar
  20. 20.
    J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom, U. Waghamare, N. Spaldin, K. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)CrossRefGoogle Scholar
  21. 21.
    J.F. Li, J. Wang, N. Wang, B. Ruette, A. Pyatakov, M. Wuttig, R. Ramesh, A. Zvezdin, D. Viehland, Appl. Phys. Letters 84, 5261 (2004)CrossRefGoogle Scholar
  22. 22.
    M. Murakami, S. Fujino, S.-H. Lim, L.G. Salamanca-Riba, M. Wuttig, I. Takeuchi, B. Varughese, H. Sugaya, T. Hasegawa, S.E. Lofland, Appl. Phys. Lett. 88, 112505 (2006)CrossRefGoogle Scholar
  23. 23.
    X.Y. Zhang, C.W. Lai, X. Zhao, D.Y. Wang, J.Y. Dai, Appl. Phys. Lett. 87, 143102 (2005)CrossRefGoogle Scholar
  24. 24.
    J. van den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, J. Mater. Sci. 9, 1705–1709 (1974)CrossRefGoogle Scholar
  25. 25.
    J. van den Boomgaard, R.A.J. Born, J. Mater. Sci. 13, 1538–1548 (1978)CrossRefGoogle Scholar
  26. 26.
    Y.R. Dai, P. Bao, J.S. Zhu, J.G. Wan, H.M. Shen, J.M. Liu, J. Appl. Phys. 96(10), 5687–5690 (2004)CrossRefGoogle Scholar
  27. 27.
    G. Srinivasan, C.P. DeVreugd, C.S. Flattery, V.M. Laletsin, N. Paddubnaya, Appl. Phys. Lett. 85(13), 2550–2552 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Mazumder, G.S. Bhattacharya, Ceram. Int. 30, 389–392 (2004)CrossRefGoogle Scholar
  29. 29.
    L. Fuentes, M. GarcÍa, D. Bueno, M.E. Fuentes, A. Muñoz, Ferroelectrics 336, 81–89 (2006)CrossRefGoogle Scholar
  30. 30.
    T.G. Lupeiko, S.S. Lopatin, I.V. Lisnevskaya, B.I. Zvyagintsev, Inorg. Mater. 30, 1353 (1994)Google Scholar
  31. 31.
    R.P. Mahajan, K.K. Patankar, M.B. Kothale, S.A. Patil, Bull. Mater. Sci. 23(4), 273–279 (2000)CrossRefGoogle Scholar
  32. 32.
    K.K. Patankar, S.A. Patil, K.V. Sivakumar, R.P. Mahajan, Y.D. Kolekar, M.B. Kothale, Mater. Chem. Phys. 65, 97–102 (2000)CrossRefGoogle Scholar
  33. 33.
    J. Ryu, S. Priya, K. Uchino, D. Viehland, H. Kim, J. Korean Ceram. Soc. 39, 813–817 (2002)CrossRefGoogle Scholar
  34. 34.
    M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Phys. Rev. B 68, 132408 (2003)CrossRefGoogle Scholar
  35. 35.
    M.J. Dapino, F.T. Calkins, A.B. Flatau, in 22nd Encyclopedia of Electrical and Electronics Engineering, vol. 12 (Wiley, 1999), pp. 278–305Google Scholar
  36. 36.
    A.E. Clark, in Ferromagnetic Materials, vol. 1, ed. by E.P. Wohlfarth (North Holland, Amsterdam, 1980), pp. 531–589CrossRefGoogle Scholar
  37. 37.
    E. du Trémolet de Lacheisserie, Magnetostriction Theory and Applications of Magnetoelasticity, (CRC Press, Boca Raton, FL, 1993)Google Scholar
  38. 38.
    J.B. Restorff, in Encyclopedia of Applied Physics, vol. 9 (VCH, New York, 1994), pp. 229–244Google Scholar
  39. 39.
    J. Smit, H.P.J. Wijn, in Ferrites, vol. 169 (Philips Technical Library, Eindhoven, Netherlands, 1959), pp. 230–231Google Scholar
  40. 40.
    C.M. Srivastava, C. Srinivasan, Science of Engineering Materials (Wiley Eastern, New Delhi, 1987), pp. 301–348Google Scholar
  41. 41.
    APC International, Piezoelectric Ceramics, (Catalogue of Materials, Mackeyville, PA)Google Scholar
  42. 42.
    S. Park, T. Shrout, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44(5), 1140–1147 (1997)CrossRefGoogle Scholar
  43. 43.
    T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, New York, 1990)Google Scholar
  44. 44.
    Landolt–Bornstein Series on Ferroelectric Oxides, III/16a, (Springer-Verlag, Berlin Heidelberg, 1999)Google Scholar
  45. 45.
    R.P. Santoro, R.E. Newnham, Technical Report AFML TR-66-327, (Air Force Materials Lab, OH) 1966Google Scholar
  46. 46.
    A.V. Shubnikov, Symmetry and Antisymmetry of Finite Figures (USSR Academy of Sciences, Moscow, 1951)Google Scholar
  47. 47.
    R.R. Birss, Symmetry, Magnetism (North-Holland, Amsterdam, 1966)Google Scholar
  48. 48.
    R.E. Newnham, Ferroelectrics 68, 1–32 (1986)Google Scholar
  49. 49.
    W.F. Brown Jr., R. Hornreich, S. Shtrikman, Phys. Rev. 168, 574 (1968)CrossRefGoogle Scholar
  50. 50.
    T.H. O’Dell, Phila. Mag. 8, 411 (1963)CrossRefGoogle Scholar
  51. 51.
    J. Echigoya, S. Hayashi, Y. Obi, J. Mater. Sci. 35, 5587–5591 (2000)CrossRefGoogle Scholar
  52. 52.
    W.E. Kramer, R.H. Hopkins, M.R. Daniel, J. Mater. Sci. 12, 409–414 (1977)CrossRefGoogle Scholar
  53. 53.
    J. Ryu, A.V. Carazo, K. Uchino, H.-E. Kim, J. Electroceram. 7, 17 (2001)CrossRefGoogle Scholar
  54. 54.
    J. Ryu, S. Priya, K. Uchino, J. Electroceram. 8, 107–119 (2002)CrossRefGoogle Scholar
  55. 55.
    M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Phys. Rev. B 68, 054402 (2003)CrossRefGoogle Scholar
  56. 56.
    G. Srinivasan, E.T. Rasmussen, R. Hayes, Phys. Rev., B 67(1), 014418 (2003)CrossRefGoogle Scholar
  57. 57.
    G. Srinivasan, E. Rasmussen, B. Levin, R. Hayes, Phys. Rev., B 65, 134402 (2002)CrossRefGoogle Scholar
  58. 58.
    R.A. Islam, S. Priya, Jpn. J. Appl. Phys. 45(5), L128–L131 (2006)CrossRefGoogle Scholar
  59. 59.
    R. Islam, S. Priya, in Proceedings of 30th International Cocoa Beach Conference and Exposition on Advanced Ceramics and Composites, FL, Jan 21–26, 2006 (in press)Google Scholar
  60. 60.
    R. Islam, S. Priya, Int. Ferroelec. (2007, in press)Google Scholar
  61. 61.
    J. Ryu, A. Vazquez Carazo, K. Uchino, H. Kim, Jpn. J. Appl. Phys. 40, 4948–4951 (2001)CrossRefGoogle Scholar
  62. 62.
    U. Lalestin, N. Padubnaya, G. Srinivasan, CP. Devreugd, Appl. Phys., A Mater. Sci. Process. 78(1), 33 (2004)CrossRefGoogle Scholar
  63. 63.
    S.X. Dong, J. Zhai, J.-F. Li, D. Viehland, J. Appl. Phys. 88, 082907 (2006)Google Scholar
  64. 64.
    S.X. Dong, J.F. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1253–1261 (2003)CrossRefGoogle Scholar
  65. 65.
    S.X. Dong, J.F. Li, D. Viehland, J. Appl. Phys. 96, 3382 (2004)CrossRefGoogle Scholar
  66. 66.
    S.X. Dong, J. Cheng, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 4812 (2003)CrossRefGoogle Scholar
  67. 67.
    S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 85, 5305 (2004)CrossRefGoogle Scholar
  68. 68.
    S.X. Dong, Junyi Zhai, Zhengping Xing, J.F. Li, D. Viehland, Appl. Phys. Lett. 86, 102901 (2005)CrossRefGoogle Scholar
  69. 69.
    J. Zhai, Z. Xing, S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 88, 062510 (2006)CrossRefGoogle Scholar
  70. 70.
    S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 85, 2307 (2004)CrossRefGoogle Scholar
  71. 71.
    S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 84, 4188 (2004), Appl. Phys. Lett. 85, 3534 (2004)Google Scholar
  72. 72.
    S.X. Dong, J.F. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(7), 794–799 (2004)Google Scholar
  73. 73.
    S.X. Dong, J. Zhai, F. Bai, J.F. Li, D. Viehland, T.A. Lograsso, J. Appl. Phys. 97, 103902 (2005)CrossRefGoogle Scholar
  74. 74.
    S.X. Dong, J. Zhai, N. Wang, F. Bai, J.F. Li, D. Viehland, T.A. Lograsso, Appl. Phys. Lett. 87, 222504 (2005)CrossRefGoogle Scholar
  75. 75.
    S. Narendra Babu, T. Bhimasankaram, S.V. Suryanarayana, Bull. Mater. Sci. 28(5), 419–422 (2005)CrossRefGoogle Scholar
  76. 76.
    V.M. Laletin, N. Paddubnaya, G. Srinivasan, C.P. De Vreugd, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Appl. Phys. Lett. 87, 222507 (2005)CrossRefGoogle Scholar
  77. 77.
    C. -W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y.H. Lin, L J. Dong, C.X. Xiong, Appl. Phys. Lett. 81, 3831 (2002)CrossRefGoogle Scholar
  78. 78.
    N. Cai, J. Zhai, C.W. Nan, Y. Lin, Z. Shi, Phys. Rev. B 68, 224103 (2003)CrossRefGoogle Scholar
  79. 79.
    Z. Shi, C. -W. Nan, J. M. Liu, D.A. Filippov, M.I. Bichurin, Phys. Rev., B 70, 134417 (2004)CrossRefGoogle Scholar
  80. 80.
    S.X. Dong, J. Zhai, F. Bai, J.F. Li, D. Viehland, Appl. Phys. Lett. 87, 052502 (2005)Google Scholar
  81. 81.
    S.X. Dong, J.F. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1236–1239 (2003)CrossRefGoogle Scholar
  82. 82.
    S.X. Dong, J.-F. Li, D. Viehland, J. Mater. Sci. 41, 97–106 (2006)CrossRefGoogle Scholar
  83. 83.
    B.O’Handley, J.K. Huang, Enhanced Performance is Piezo-based Energy Harvesters. Presented at UTA Workshop on Piezoelectric Energy Harvesting, The University of Texas Arlington, TX, Jan. 27, 2006Google Scholar
  84. 84.
    M.D. Mermelstein, A. Dandrige, Appl. Phys. Lett. 51(7), 545–547 (1987)CrossRefGoogle Scholar
  85. 85.
    T. Ueno, T. Higuchi, IEEE Trans. Magn. 41(10), 3670–3672 (2005)CrossRefGoogle Scholar
  86. 86.
    E. Quandt, S. Stein, M. Wuttig, IEEE Trans. Magn. 41(10), 3667–3669 (2005)CrossRefGoogle Scholar
  87. 87.
    G. Srinivasan, A.S. Tatarenko, M.I. Bichurin, Electron. Lett. 41(10), 596–598 (2005)CrossRefGoogle Scholar
  88. 88.
    Y.K. Fetisov, G. Srinivasan, Electron. Lett. 41(19), 1066–1067 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shashank Priya
    • 1
    Email author
  • Rashed Islam
    • 1
  • Shuxiang Dong
    • 2
  • D. Viehland
    • 2
  1. 1.Automation and Robotics Research Institute, Materials Science and EngineeringThe University of TexasArlingtonUSA
  2. 2.Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations